
Contents

 Azure Kinect DK documentation
 Overview

 About Azure Kinect DK
 Quickstarts

 Set up Azure Kinect DK
 Record sensor streams to a file
 Build your first application
 Set up Body Tracking SDK
 Build your first body tracking application

 Concepts
 Depth camera
 Coordinate systems
 Body tracking joints
 Body tracking index map

 How-to guides
 Use Sensor SDK

 Azure Kinect Sensor SDK
 Find then open device
 Retrieve images
 Retrieve IMU samples
 Access microphone
 Use image transformations
 Use calibration functions
 Capture device synchronization
 Record and playback

 Use Body Tracking SDK
 Get body tracking results
 Access data in body frame

 Add Azure Kinect library to a project

file:///T:/zib1/kinect-dk/index.yml

 Update Azure Kinect firmware
 Use recorder with external synchronized units

 Tools
 Azure Kinect viewer
 Azure Kinect recorder
 Azure Kinect firmware tool

 Resources
 Download the Sensor SDK
 Download the Body Tracking SDK
 System requirements
 Hardware specification
 Multi-camera synchronization
 Compare to Kinect for Windows
 Reset Azure Kinect DK
 Azure Kinect support
 Azure Kinect troubleshooting
 Warranties, extended service plans, and Terms & Conditions
 Safety information

 References
 Sensor API
 Body tracking API
 Record file format

https://support.microsoft.com/help/4493926/warranties-extended-service-plans-and-terms-conditions-for-your-device
https://support.microsoft.com/help/4023454/safety-information
https://microsoft.github.io/azure-kinect-sensor-sdk/master/index.html
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/index.html

About Azure Kinect DK
11/12/2019 • 2 minutes to read • Edit Online

Azure Kinect Sensor SDK

Azure Kinect Sensor SDK features

Azure Kinect DK is a developer kit with advanced AI sensors that provide sophisticated computer vision and
speech models. Kinect contains a depth sensor, spatial microphone array with a video camera, and orientation
sensor as an all in-one small device with multiple modes, options, and software development kits (SDKs). It is
available for purchase in Microsoft online store.

The Azure Kinect DK development environment consists of the following multiple SDKs:

Sensor SDK for low-level sensor and device access.
Body Tracking SDK for tracking bodies in 3D.
Speech Cognitive Services SDK for enabling microphone access and Azure cloud-based speech services.

In addition, Cognitive Vision services can be used with the device RGB camera.

The Azure Kinect Sensor SDK provides low-level sensor access for Azure Kinect DK hardware sensors and device
configuration.

To learn more about Azure Kinect Sensor SDK, see Using Sensor SDK.

The Sensor SDK has the following features that work once installed and run on the Azure Kinect DK:

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/about-azure-kinect-dk.md
https://www.microsoft.com/p/azure-kinect-dk/8pp5vxmd9nhq

Azure Kinect Sensor SDK tools

Azure Kinect Body Tracking SDK

Azure Kinect Body Tracking features

Azure Kinect Body Tracking tools

Speech Cognitive services SDK

Speech services

NOTE

Vision services

Depth camera access and mode control (a passive IR mode, plus wide and narrow field-of-view depth modes)
RGB camera access and control (for example, exposure and white balance)
Motion sensor (gyroscope and accelerometer) access
Synchronized Depth-RGB camera streaming with configurable delay between cameras
External device synchronization control with configurable delay offset between devices
Camera frame meta-data access for image resolution, timestamp, etc.
Device calibration data access

The following tools are available in the Sensor SDK:

A viewer tool to monitor device data streams and configure different modes.
A sensor recording tool and playback reader API that uses the Matroska container format.
An Azure Kinect DK firmware update tool.

The Body Tracking SDK includes a Windows library and runtime to track bodies in 3D when used with the Azure
Kinect DK hardware.

The following body-tracking features are available on the accompanying SDK:

Provides body segmentation.
Contains an anatomically correct skeleton for each partial or full body in FOV.
Offers a unique identity for each body.
Can track bodies over time.

Body Tracker has a viewer tool to track bodies in 3D.

The Speech SDK enables Azure-connected speech services.

Speech-to-text
Speech translation
Text-to-Speech

The Azure Kinect DK does not have speakers.

For additional details and information, visit Speech Service documentation.

The following Azure Cognitive Vision Services provide Azure services that can identify and analyze content within
images and videos.

Computer vision
Face

https://docs.microsoft.com/azure/cognitive-services/speech-service/
https://azure.microsoft.com/services/cognitive-services/directory/vision/
https://azure.microsoft.com/services/cognitive-services/computer-vision/
https://azure.microsoft.com/services/cognitive-services/face/

Azure Kinect hardware requirements

Next steps

Video indexer
Content moderator
Custom vision

Services evolve and improve constantly, so remember to check regularly for new or additional Cognitive services
to improve your application. For an early look on emerging new services, check out the Cognitive services labs.

The Azure Kinect DK integrates Microsoft's latest sensor technology into single USB connected accessory. For
more information, see Azure Kinect DK Hardware Specification.

You now have an overview of Azure Kinect DK. The next step is to dive in and set it up!

Quickstart: Set up Azure Kinect DK

https://azure.microsoft.com/services/media-services/video-indexer/
https://azure.microsoft.com/services/cognitive-services/content-moderator/
https://azure.microsoft.com/services/cognitive-services/custom-vision-service/
https://azure.microsoft.com/services/cognitive-services/
https://labs.cognitive.microsoft.com/

Quickstart: Set up your Azure Kinect DK
2/14/2020 • 2 minutes to read • Edit Online

System requirements

Set up hardware

NOTE

Download the SDK

This quickstart provides guidance about how to set up your Azure Kinect DK. We'll show you how to test sensor
stream visualization and use the Azure Kinect Viewer.

If you don't have an Azure subscription, create a free account before you begin.

Check System requirements to verify that your host PC configuration meets all Azure Kinect DK minimum
requirements.

Make sure to remove the camera protective film before using the device.

NOTE

1. Plug the power connector into the power jack on the back of your device. Connect the USB power adapter
to the other end of the cable, and then plug the adapter into a power outlet.

2. Connect the USB data cable into your device, and then to a USB 3.0 port on your PC.

For best results, connect the cable directly to the device and to the PC. Avoid using extensions or extra adapters in
the connection.

3. Verify that the power indicator LED (next to the USB cable) is solid white.

Device power-on takes a few seconds. The device is ready to use when the front-facing LED streaming
indicator turns off.

For more information about the power indicator LED, see What does the light mean?

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/set-up-azure-kinect-dk.md
https://azure.microsoft.com/free/?wt.mc_id=a261c142f

Update Firmware

Verify that the device streams data

1. Select the link to Download the SDK.
2. Install the SDK on your PC.

To work properly, the SDK requires the latest version of the device firmware. To check and update your firmware
version,follow the steps in Update Azure Kinect DK firmware.

1. Launch the Azure Kinect Viewer. You can start this tool by using one of these methods:

You can launch the viewer from the command line or by double-clicking the executable file. The file,
k4aviewer.exe , resides in the SDK tools directory (for example,
C:\Program Files\Azure Kinect SDK vX.Y.Z\tools\k4aviewer.exe , where X.Y.Z is the installed version of

the SDK).
You can launch Azure Kinect Viewer from the device Start menu.

2. In Azure Kinect Viewer, select Open Device > Start.

3. Verify that the tool visualizes each sensor stream:

Depth camera
Color camera
Infrared camera
IMU
Microphones

See also

Next steps

You're done with your Azure Kinect DK setup. Now you can start developing your application or integrating
services.

If you have any issues, check Troubleshooting.

Azure Kinect DK hardware information
Update device firmware
Learn more about Azure Kinect Viewer

After the Azure Kinect DK is ready and working, you can also learn how to

Record sensor streams to a file

Quickstart: Record Azure Kinect sensor streams to a
file
11/12/2019 • 2 minutes to read • Edit Online

Prerequisites

Create recording

Play back recording

Next steps

This quickstart provides information about how you can use the Azure Kinect recorder tool to record data streams
from the Sensor SDK to a file.

If you don't have an Azure subscription, create a free account before you begin.

This quickstart assumes:

You have the Azure Kinect DK connected to your host PC and powered properly.
You have finished setting up the hardware.

1. Open a command prompt, and provide the path to the Azure Kinect recorder, located in the installed tools
directory as k4arecorder.exe . For example: C:\Program Files\Azure Kinect SDK\tools\k4arecorder.exe .

2. Record 5 seconds.

k4arecorder.exe -l 5 %TEMP%\output.mkv

3. By default, the recorder uses the NFOV Unbinned depth mode and outputs 1080p RGB at 30 fps including
IMU data. For a complete overview of recording options and tips, refer to Azure Kinect recorder.

You can use the Azure Kinect Viewer to play back a recording.

1. Launch k4aviewer.exe

2. Unfold the Open Recording tab and open your recording.

Now that you've learned how to record sensor streams to a file, it's time to

Build your first Azure Kinect application

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/record-sensor-streams-file.md
https://azure.microsoft.com/free/?wt.mc_id=a261c142f

Quickstart: Build your first Azure Kinect application
8/28/2019 • 3 minutes to read • Edit Online

Prerequisites

Headers

#include <k4a/k4a.h>

Finding an Azure Kinect DK device

uint32_t count = k4a_device_get_installed_count();

// Open the first plugged in Kinect device
k4a_device_t device = NULL;
k4a_device_open(K4A_DEVICE_DEFAULT, &device);

Getting started with the Azure Kinect DK? This quickstart will get you up and running with the device!

If you don't have an Azure subscription, create a free account before you begin.

The following functions are covered:

k4a_device_get_installed_count()

k4a_device_open()

k4a_device_get_serialnum()

k4a_device_start_cameras()

k4a_device_stop_cameras()

k4a_device_close()

1. Set up the Azure Kinect DK device.
2. Download and install the Azure Kinect Sensor SDK.

There's only one header that you'll need, and that's k4a.h . Make sure your compiler of choice is set up with the
SDK's lib and include folders. You'll also need the k4a.lib and k4a.dll files linked up. You may want to refer to
adding the Azure Kinect library to your project.

Multiple Azure Kinect DK devices can be connected to your computer. We'll first start by finding out how many, or
if any are connected at all using the k4a_device_get_installed_count() function. This function should work right
away, without any additional setup.

Once you've determined there's a device connected to the computer, you can open it using k4a_device_open() . You
can provide the index of the device you want to open, or you can just use K4A_DEVICE_DEFAULT for the first one.

As with most things in the Azure Kinect library, when you open something, you should also close it when you're
finished with it! When you're shutting down, remember to make a call to k4a_device_close() .

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/build-first-app.md
https://azure.microsoft.com/free/?wt.mc_id=a261c142f
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaf7d19df0f73f8e4dfaa21e1b4b719ecc.html#gaf7d19df0f73f8e4dfaa21e1b4b719ecc
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga3d4eb5dfbf4d576d4978b66ea419f113.html#ga3d4eb5dfbf4d576d4978b66ea419f113
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga798489af207ff1c99f2285ff6b08bc22.html#ga798489af207ff1c99f2285ff6b08bc22
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaad7a85e1e5471810262442fc4a8e217a.html#gaad7a85e1e5471810262442fc4a8e217a
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga4fa0e0a011a7105309ad97f081a5d6b8.html#ga4fa0e0a011a7105309ad97f081a5d6b8
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga7a3931d9a690b3971caaac83b43f9423.html#ga7a3931d9a690b3971caaac83b43f9423
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaf7d19df0f73f8e4dfaa21e1b4b719ecc.html#gaf7d19df0f73f8e4dfaa21e1b4b719ecc
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga3d4eb5dfbf4d576d4978b66ea419f113.html#ga3d4eb5dfbf4d576d4978b66ea419f113
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga7a3931d9a690b3971caaac83b43f9423.html#ga7a3931d9a690b3971caaac83b43f9423

k4a_device_close(device);

// Get the size of the serial number
size_t serial_size = 0;
k4a_device_get_serialnum(device, NULL, &serial_size);

// Allocate memory for the serial, then acquire it
char *serial = (char*)(malloc(serial_size));
k4a_device_get_serialnum(device, serial, &serial_size);
printf("Opened device: %s\n", serial);
free(serial);

Starting the cameras

// Configure a stream of 4096x3072 BRGA color data at 15 frames per second
k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
config.camera_fps = K4A_FRAMES_PER_SECOND_15;
config.color_format = K4A_IMAGE_FORMAT_COLOR_BGRA32;
config.color_resolution = K4A_COLOR_RESOLUTION_3072P;

// Start the camera with the given configuration
k4a_device_start_cameras(device, &config);

// ...Camera capture and application specific code would go here...

// Shut down the camera when finished with application logic
k4a_device_stop_cameras(device);

Error handling

// Open the first plugged in Kinect device
k4a_device_t device = NULL;
if (K4A_FAILED(k4a_device_open(K4A_DEVICE_DEFAULT, &device)))
{
 printf("Failed to open k4a device!\n");
 return;
}

Full source

Once the device is open, we can make a test to ensure it's working. So let's read the device's serial number!

Once you've opened the device, you'll need to configure the camera with a k4a_device_configuration_t object.
Camera configuration has a number of different options. Choose the settings that best fit your own scenario.

For the sake of brevity and clarity, we don't show error handling in some inline examples. However, error handling
is always important! Many functions will return a general success/failure type k4a_result_t , or a more specific
variant with detailed information such as k4a_wait_result_t . Check the docs or IntelliSense for each function to
see what error messages you should expect to see from it!

You can use the K4A_SUCCEEDED and K4A_FAILED macros to check the result of a function. So instead of just
opening an Azure Kinect DK device, we might guard the function call like this:

https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__device__configuration__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___enumerations_ga4b419a99aa2220b076a4520dc2afd1e5.html#ga4b419a99aa2220b076a4520dc2afd1e5
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___enumerations_ga44c7c0c1cfba7c879e9e2da1a869e4ee.html#ga44c7c0c1cfba7c879e9e2da1a869e4ee
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___macros_ga8e5b48150bc243c6052793bd830c2fcd.html#ga8e5b48150bc243c6052793bd830c2fcd
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___macros_ga7c2e32349135d008b6f836c571d434b4.html#ga7c2e32349135d008b6f836c571d434b4

#pragma comment(lib, "k4a.lib")
#include <k4a/k4a.h>

#include <stdio.h>
#include <stdlib.h>

int main()
{
 uint32_t count = k4a_device_get_installed_count();
 if (count == 0)
 {
 printf("No k4a devices attached!\n");
 return 1;
 }

 // Open the first plugged in Kinect device
 k4a_device_t device = NULL;
 if (K4A_FAILED(k4a_device_open(K4A_DEVICE_DEFAULT, &device)))
 {
 printf("Failed to open k4a device!\n");
 return 1;
 }

 // Get the size of the serial number
 size_t serial_size = 0;
 k4a_device_get_serialnum(device, NULL, &serial_size);

 // Allocate memory for the serial, then acquire it
 char *serial = (char*)(malloc(serial_size));
 k4a_device_get_serialnum(device, serial, &serial_size);
 printf("Opened device: %s\n", serial);
 free(serial);

 // Configure a stream of 4096x3072 BRGA color data at 15 frames per second
 k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
 config.camera_fps = K4A_FRAMES_PER_SECOND_15;
 config.color_format = K4A_IMAGE_FORMAT_COLOR_BGRA32;
 config.color_resolution = K4A_COLOR_RESOLUTION_3072P;

 // Start the camera with the given configuration
 if (K4A_FAILED(k4a_device_start_cameras(device, &config)))
 {
 printf("Failed to start cameras!\n");
 k4a_device_close(device);
 return 1;
 }

 // Camera capture and application specific code would go here

 // Shut down the camera when finished with application logic
 k4a_device_stop_cameras(device);
 k4a_device_close(device);

 return 0;
}

Next steps
Learn how to find and open a Azure Kinect DK device using Sensor SDK

Find and open a device

Quickstart: Set up Azure Kinect body tracking
1/24/2020 • 2 minutes to read • Edit Online

System requirements

Install software
Install the latest NVIDIA Driver

Visual C++ Redistributable for Visual Studio 2015

Set up hardware
Set up Azure Kinect DK

Download the Body Tracking SDK

Verify body tracking

This quickstart will guide you through the process of getting body tracking running on your Azure Kinect DK.

The Body Tracking SDK requires a NVIDIA GPU installed in the host PC. The recommended body tracking host
PC requirement is described in system requirements page.

Download and install the latest NVIDIA driver for your graphics card. Older drivers may not be compatible with
the CUDA binaries redistributed with the body tracking SDK.

Download and install Visual C++ Redistributable for Visual Studio 2015.

Launch the Azure Kinect Viewer to check that your Azure Kinect DK is set up correctly.

1. Select the link to Download the Body Tracking SDK
2. Install the Body Tracking SDK on your PC.

Launch the Azure Kinect Body Tracking Viewer to check that the Body Tracking SDK is set up correctly. The
viewer is installed with the SDK msi installer. You can find it at your start menu or at
<SDK Installation Path>\tools\k4abt_simple_3d_viewer.exe .

If you don't have a powerful enough GPU and still want to test the result, you can launch the the Azure Kinect
Body Tracking Viewer in the command line by the following command:
<SDK Installation Path>\tools\k4abt_simple_3d_viewer.exe CPU

If everything is set up correctly, a window with a 3D point cloud and tracked bodies should appear.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/body-sdk-setup.md
https://www.nvidia.com/download/index.aspx?lang=en-us
https://www.microsoft.com/en-us/download/details.aspx?id=48145

Examples

Next steps

You can find the examples about how to use the body tracking SDK here.

Build your first body tracking application

https://github.com/microsoft/azure-kinect-samples/tree/master/body-tracking-samples

Quickstart: Build an Azure Kinect body tracking
application
1/24/2020 • 4 minutes to read • Edit Online

Prerequisites

Headers

#include <k4a/k4a.h>
#include <k4abt.h>

Open device and start the camera

Getting started with the Body Tracking SDK? This quickstart will get you up and running with body tracking! You
can find more examples in this Azure-Kinect-Sample repo.

Set up Azure Kinect DK
Set up Body Tracking SDK
Walk through how to build your first Azure Kinect application quickstart.
Familiarize yourself with the following Sensor SDK functions:

Review the documentation on the following Body Tracking SDK functions:

k4a_device_open()
k4a_device_start_cameras()
k4a_device_stop_cameras()
k4a_device_close()

k4abt_tracker_create()
k4abt_tracker_enqueue_capture()
k4abt_tracker_pop_result()
k4abt_tracker_shutdown()
k4abt_tracker_destroy()

Body tracking uses a single header, k4abt.h . Include this header in addition to k4a.h . Make sure your compiler of
choice is set up for both the Sensor SDK and the Body Tracking SDK lib and include folders. You also need to
link to k4a.lib and k4abt.lib files. Running the application requires k4a.dll , k4abt.dll , onnxruntime.dll , and
dnn_model.onnx to be in the applications execution path.

Your first body tracking application assumes a single Azure Kinect device connected to the PC.

Body tracking builds on the Sensor SDK. To use body tracking, you first need to open and configure the device.
Use the k4a_device_open() function to open the device and then configure it with a k4a_device_configuration_t
object. For best results set the depth mode to K4A_DEPTH_MODE_NFOV_UNBINNED or K4A_DEPTH_MODE_WFOV_2X2BINNED .
The body tracker will not run if the depth mode is set to K4A_DEPTH_MODE_OFF or K4A_DEPTH_MODE_PASSIVE_IR .

You can find more information on finding and opening the device on this page.

You can find more information on Azure Kinect depth modes on these pages: hardware specification and
k4a_depth_mode_t enumerations.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/build-first-body-app.md
https://github.com/microsoft/azure-kinect-samples/tree/master/body-tracking-samples
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga3d4eb5dfbf4d576d4978b66ea419f113.html#ga3d4eb5dfbf4d576d4978b66ea419f113
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaad7a85e1e5471810262442fc4a8e217a.html#gaad7a85e1e5471810262442fc4a8e217a
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga4fa0e0a011a7105309ad97f081a5d6b8.html#ga4fa0e0a011a7105309ad97f081a5d6b8
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga7a3931d9a690b3971caaac83b43f9423.html#ga7a3931d9a690b3971caaac83b43f9423
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga1aa71481b8441def94de11b29e0e3cbc.html#ga1aa71481b8441def94de11b29e0e3cbc
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga093becd9bb4a63f5f4d56f58097a7b1e.html#ga093becd9bb4a63f5f4d56f58097a7b1e
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_gaaf446fb1579cbbe0b6af824ee0a7458b.html#gaaf446fb1579cbbe0b6af824ee0a7458b
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga94036969ef94cbc414c78b3f6d04bfa5.html#ga94036969ef94cbc414c78b3f6d04bfa5
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_gab2c9afca092130976cd66077c0557ed1.html#gab2c9afca092130976cd66077c0557ed1
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga3d4eb5dfbf4d576d4978b66ea419f113.html#ga3d4eb5dfbf4d576d4978b66ea419f113
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__device__configuration__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___enumerations_ga3507ee60c1ffe1909096e2080dd2a05d.html#ga3507ee60c1ffe1909096e2080dd2a05d

k4a_device_t device = NULL;
k4a_device_open(0, &device);

// Start camera. Make sure depth camera is enabled.
k4a_device_configuration_t deviceConfig = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
deviceConfig.depth_mode = K4A_DEPTH_MODE_NFOV_UNBINNED;
deviceConfig.color_resolution = K4A_COLOR_RESOLUTION_OFF;
k4a_device_start_cameras(device, &deviceConfig);

Create the tracker

k4a_calibration_t sensor_calibration;
k4a_device_get_calibration(device, deviceConfig.depth_mode, deviceConfig.color_resolution,
&sensor_calibration);

k4abt_tracker_t tracker = NULL;
k4abt_tracker_configuration_t tracker_config = K4ABT_TRACKER_CONFIG_DEFAULT;
k4abt_tracker_create(&sensor_calibration, tracker_config, &tracker);

Get captures from the Azure Kinect device

// Capture a depth frame
k4a_device_get_capture(device, &capture, TIMEOUT_IN_MS);

Enqueue the capture and pop the results

The first step in getting body tracking results is to create a body tracker. It needs the sensor calibration
k4a_calibration_t structure. The sensor calibration can be queried using the k4a_device_get_calibration() function.

You can find more information on retrieving image data on this page.

The tracker internally maintains an input queue and an output queue to asynchronously process the Azure Kinect
DK captures more efficiently. The next step is to use the k4abt_tracker_enqueue_capture() function to add a new
capture to the input queue. Use the k4abt_tracker_pop_result() function to pop a result from the output queue.
The timeout value is dependent on the application and controls the queueing wait time.

Your first body tracking application uses the real-time processing pattern. Refer to get body tracking results for a
detailed explanation of the other patterns.

https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__calibration__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga4e43940d8d8db48da266c7a7842c8d78.html#ga4e43940d8d8db48da266c7a7842c8d78

k4a_wait_result_t queue_capture_result = k4abt_tracker_enqueue_capture(tracker, sensor_capture,
K4A_WAIT_INFINITE);
k4a_capture_release(sensor_capture); // Remember to release the sensor capture once you finish using it
if (queue_capture_result == K4A_WAIT_RESULT_FAILED)
{
 printf("Error! Adding capture to tracker process queue failed!\n");
 break;
}

k4abt_frame_t body_frame = NULL;
k4a_wait_result_t pop_frame_result = k4abt_tracker_pop_result(tracker, &body_frame, K4A_WAIT_INFINITE);
if (pop_frame_result == K4A_WAIT_RESULT_SUCCEEDED)
{
 // Successfully popped the body tracking result. Start your processing
 ...

 k4abt_frame_release(body_frame); // Remember to release the body frame once you finish using it
}

Access the body tracking result data

size_t num_bodies = k4abt_frame_get_num_bodies(body_frame);
printf("%zu bodies are detected!\n", num_bodies);

Clean up

k4abt_tracker_shutdown(tracker);
k4abt_tracker_destroy(tracker);
k4a_device_stop_cameras(device);
k4a_device_close(device);

Full source
#include <stdio.h>
#include <stdlib.h>

#include <k4a/k4a.h>
#include <k4abt.h>

#define VERIFY(result, error) \
 if(result != K4A_RESULT_SUCCEEDED) \
 { \
 printf("%s \n - (File: %s, Function: %s, Line: %d)\n", error, __FILE__, __FUNCTION__, __LINE__); \
 exit(1); \
 } \

int main()
{
 k4a_device_t device = NULL;
 VERIFY(k4a_device_open(0, &device), "Open K4A Device failed!");

The body tracking results for each sensor capture are stored in a body frame k4abt_frame_t structure. Each body
frame contains three key components: a collection of body structs, a 2D body index map, and the input capture.

Your first body tracking application only accesses the number of detected bodies. Refer to access data in body
frame for detailed explanation of data in a body frame.

The final step is to shut down the body tracker and release the body tracking object. You also need to stop and
close the device.

https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/structk4abt__frame__t.html

 VERIFY(k4a_device_open(0, &device), "Open K4A Device failed!");

 // Start camera. Make sure depth camera is enabled.
 k4a_device_configuration_t deviceConfig = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
 deviceConfig.depth_mode = K4A_DEPTH_MODE_NFOV_UNBINNED;
 deviceConfig.color_resolution = K4A_COLOR_RESOLUTION_OFF;
 VERIFY(k4a_device_start_cameras(device, &deviceConfig), "Start K4A cameras failed!");

 k4a_calibration_t sensor_calibration;
 VERIFY(k4a_device_get_calibration(device, deviceConfig.depth_mode, deviceConfig.color_resolution,
&sensor_calibration),
 "Get depth camera calibration failed!");

 k4abt_tracker_t tracker = NULL;
 k4abt_tracker_configuration_t tracker_config = K4ABT_TRACKER_CONFIG_DEFAULT;
 VERIFY(k4abt_tracker_create(&sensor_calibration, tracker_config, &tracker), "Body tracker initialization
failed!");

 int frame_count = 0;
 do
 {
 k4a_capture_t sensor_capture;
 k4a_wait_result_t get_capture_result = k4a_device_get_capture(device, &sensor_capture,
K4A_WAIT_INFINITE);
 if (get_capture_result == K4A_WAIT_RESULT_SUCCEEDED)
 {
 frame_count++;
 k4a_wait_result_t queue_capture_result = k4abt_tracker_enqueue_capture(tracker, sensor_capture,
K4A_WAIT_INFINITE);
 k4a_capture_release(sensor_capture); // Remember to release the sensor capture once you finish
using it
 if (queue_capture_result == K4A_WAIT_RESULT_TIMEOUT)
 {
 // It should never hit timeout when K4A_WAIT_INFINITE is set.
 printf("Error! Add capture to tracker process queue timeout!\n");
 break;
 }
 else if (queue_capture_result == K4A_WAIT_RESULT_FAILED)
 {
 printf("Error! Add capture to tracker process queue failed!\n");
 break;
 }

 k4abt_frame_t body_frame = NULL;
 k4a_wait_result_t pop_frame_result = k4abt_tracker_pop_result(tracker, &body_frame,
K4A_WAIT_INFINITE);
 if (pop_frame_result == K4A_WAIT_RESULT_SUCCEEDED)
 {
 // Successfully popped the body tracking result. Start your processing

 size_t num_bodies = k4abt_frame_get_num_bodies(body_frame);
 printf("%zu bodies are detected!\n", num_bodies);

 k4abt_frame_release(body_frame); // Remember to release the body frame once you finish using
it
 }
 else if (pop_frame_result == K4A_WAIT_RESULT_TIMEOUT)
 {
 // It should never hit timeout when K4A_WAIT_INFINITE is set.
 printf("Error! Pop body frame result timeout!\n");
 break;
 }
 else
 {
 printf("Pop body frame result failed!\n");
 break;
 }
 }
 else if (get_capture_result == K4A_WAIT_RESULT_TIMEOUT)
 {

 {
 // It should never hit time out when K4A_WAIT_INFINITE is set.
 printf("Error! Get depth frame time out!\n");
 break;
 }
 else
 {
 printf("Get depth capture returned error: %d\n", get_capture_result);
 break;
 }

 } while (frame_count < 100);

 printf("Finished body tracking processing!\n");

 k4abt_tracker_shutdown(tracker);
 k4abt_tracker_destroy(tracker);
 k4a_device_stop_cameras(device);
 k4a_device_close(device);

 return 0;
}

Next steps
Get body tracking results

Azure Kinect DK depth camera
11/12/2019 • 5 minutes to read • Edit Online

Operating principles

Key features

This page covers how to use the depth camera in your Azure Kinect DK. The depth camera is the second of the two
cameras. As covered in previous sections, the other camera is the RGB camera.

The Azure Kinect DK depth camera implements the Amplitude Modulated Continuous Wave (AMCW) Time-of-
Flight (ToF) principle. The camera casts modulated illumination in the near-IR (NIR) spectrum onto the scene. It
then records an indirect measurement of the time it takes the light to travel from the camera to the scene and back.

These measurements are processed to generate a depth map. A depth map is a set of Z-coordinate values for every
pixel of the image, measured in units of millimeters.

Along with a depth map, we also obtain a so-called clean IR reading. The value of pixels in the clean IR reading is
proportional to the amount of light returned from the scene. The image looks similar to a regular IR image. The
figure below shows an example depth map (left) and a corresponding clean IR image (right).

Technical characteristics of the depth camera include:

1-Megapixel ToF imaging chipwith advanced pixel technology enabling higher modulation frequencies and
depth precision.
Two NIR Laser diodes enabling near and wide field-of-view (FoV) depth modes.
The world’s smallest ToF pixel, at 3.5μm by 3.5μm.
Automatic per pixel gain selection enabling large dynamic range allowing near and far objects to be captured
cleanly.
Global shutter that allows for improved performance in sunlight.
Multi-phase depth calculation method that enables robust accuracy even in the presence of chip, laser, and
power supply variation.
Low systematic and random errors.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/depth-camera.md

Camera performance

Systematic Error

Random error

The depth camera transmits raw modulated IR images to the host PC. On the PC, the GPU accelerated depth
engine software converts the raw signal into depth maps.The depth camera supports several modes. The narrow
field of view (FoV) modes are ideal for scenes with smaller extents in X- and Y-dimensions, but larger extents in
the Z-dimension. If the scene has large X- and Y-extents, but smaller Z-ranges, the wide FoV modes are better
suited.

The depth camera supports 2x2 binning modes to extend the Z-range in comparison to the corresponding
unbinned modes. Binning is done at the cost of lowering image resolution. All modes can be run at up to 30
frames-per-second (fps) with exception of the 1 megapixel (MP) mode that runs at a maximum frame rate of 15
fps. The depth camera also provides a passive IR mode. In this mode, the illuminators on the camera aren't active
and only ambient illumination is observed.

The camera’s performance is measured as systematic and random errors.

Systematic error is defined as the difference between the measured depth after noise removal and the correct
(ground truth) depth. We compute the temporal average over many frames of a static scene to eliminate depth
noise as much as possible. More precisely, the systematic error is defined as:

Where d denotes the measure depth at time t, N is the number of frames used in the averaging procedure and d
is the ground truth depth.

t gt

The depth camera’s systematic error specification is excluding multi-path interference (MPI). MPI is when one
sensor pixel integrates light that's reflected by more than one object. MPI is partly mitigated in our depth camera
using higher modulation frequencies, along with the depth invalidation, which we'll introduce later.

Let's assume we take 100 images of the same object without moving the camera. The depth of the object will be

Invalidation

Illumination Mask

Signal strength

slightly different in each of the 100 images. This difference is caused by shot noise. Shot noise is the number of
photons hitting the sensor varies by a random factor over time. We define this random error on a static scene as
the standard deviation of depth over time computed as:

Where N denotes the number of depth measurements, d represents the depth measurement at time t and d
denotes the mean value computed over all depth measurements d .

t

t

In certain situations, the depth camera may not provide correct values for some pixels. In these situations depth
pixels are invalidated. Invalid pixels are indicated by the depth value equals to 0. Reasons for the depth engine
being unable to produce correct values include:

Outside of active IR illumination mask
Saturated IR signal
Low IR signal
Filter outlier
Multi-path interference

Pixels are invalidated when they're outside of the active IR illumination mask. We don't recommend using the
signal of such pixels to compute depth. The figure below, shows the example of invalidation by illumination mask.
The invalidated pixels are the black-color pixels outside the circle in the wide FoV modes (left), and the hexagon in
the narrow FoV modes (right).

Pixels are invalidated when they contain a saturated IR signal. When pixels are saturated, phase information is lost.
The image below, shows the example of invalidation by a saturated IR signal. See arrows pointed to the example
pixels in both the depth and IR images.

Ambiguous depth

Invalidation can also occur when the IR signal isn't strong enough to generate depth. The below figure, shows the
example of invalidation by a low IR signal. See the arrows pointed to example pixels in both the depth and IR
images.

Pixels can also be invalidated if they received signals from more than one object in the scene. A common case
where this sort of invalidation can be seen is in corners. Because of the scene geometry, the IR light from the
camera reflected off one wall and onto the other. This reflected light causes ambiguity in the measured depth of the
pixel. Filters in the depth algorithm detect these ambiguous signals and invalidate the pixels.

The figures below show examples of invalidation by multi-path detection. You also can see how the same surface
area that was invalidated from one camera view (top row) may appear again from a different camera view (bottom
row). This image demonstrates that surfaces invalidated from one perspective may be visible from another.

Another common case of multipath is pixels that contain the mixed signal from foreground and background (such
as around object edges). During fast motion, you may see more invalidated pixels around the edges. The additional
invalidated pixels are because of the exposure interval of the raw depth capture,

Next steps
Coordinate systems

Azure Kinect DK coordinate systems
7/2/2019 • 2 minutes to read • Edit Online

2D coordinate systems

3D coordinate systems

Depth and color camera

In this article, we describe conventions used for 2D and 3D coordinate systems. There are separate coordinate
systems associated with each sensor's device and the calibration functions allowed to transform points between
them. The transformation functions transform entire images between coordinate systems.

Both depth and color cameras are associated with an independent 2D coordinate system. An [x,y]-coordinate is
represented in units of pixels where x ranges from 0 to width-1 and y ranges from 0 to height-1. Width and height
depend on the chosen mode in which depth and color cameras are operated. The pixel coordinate [0,0]

corresponds to the top-left pixel of the image. Pixel coordinates can be fractional representing subpixel
coordinates.

The 2D coordinate system is 0-centered, that is, the subpixel coordinate [0.0, 0.0] represents the center and
[0.5,0.5] the bottom-right corner of the pixel, as shown below.

Each camera, the accelerometer, and the gyroscope, are associated with an independent 3D coordinate space
system.

Points in the 3D-coordinate systems are represented as metric [X,Y,Z]-coordinate triplets with units in millimeters.

The origin [0,0,0] is located at the focal point of the camera. The coordinate system is oriented such that the
positive X-axis points right, the positive Y-axis points down, and the positive Z-axis points forward.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/coordinate-systems.md

Gyroscope and accelerometer

Next Steps

The depth camera is tilted 6 degrees downwards of the color camera, as shown below.

There are two illuminators used by the depth camera. The illuminator used in narrow field-of-view (NFOV) modes
is aligned with the depth camera case, so, the illuminator is not tilted. The illuminator used in wide field-of-view
(WFOV) modes is tilted an additional 1.3 degrees downward relative to the depth camera.

The gyroscope's origin [0,0,0] is identical to the origin of the depth camera. The origin of the accelerometer
coincides with its physical location. Both the accelerometer and gyroscope coordinate systems are right-handed.
The coordinate system's positive X-axis points backward, the positive Y-axis points left, and the positive Z-axis
points down, as shown below.

Learn about Azure Kinect Sensor SDK

Azure Kinect body tracking joints
12/10/2019 • 2 minutes to read • Edit Online

Joints

Joint coordinates

NOTE

Azure Kinect body tracking can track multiple human bodies at the same time. Each body includes an ID for
temporal correlation between frames and the kinematic skeleton. The number of bodies detected in each frame can
be acquired using k4abt_frame_get_num_bodies() .

Joint position and orientation are estimates relative to the global depth sensor frame of reference. The position is
specified in millimeters. The orientation is expressed as a normalized quaternion.

The position and orientation of each joint form its own joint coordinate system. All joint coordinate systems are
absolute coordinate systems relative to the depth camera 3D coordinate system.

Joint coordinates are in axis orientation. Axis orientation is widely used with commercial avatars, game engines, and rendering
software. Using axis orientation simplifies mirrored movements e.g. raise both arms by 20 degrees.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/body-joints.md

Joint hierarchy
A skeleton includes 32 joints with the joint hierarchy flowing from the center of the body to the extremities. Each
connection (bone) links the parent joint with a child joint. The figure illustrates the joint locations and connection
relative to the human body.

INDEX JOINT NAME PARENT JOINT

0 PELVIS -

1 SPINE_NAVAL PELVIS

2 SPINE_CHEST SPINE_NAVAL

3 NECK SPINE_CHEST

4 CLAVICLE_LEFT SPINE_CHEST

5 SHOULDER_LEFT CLAVICLE_LEFT

6 ELBOW_LEFT SHOULDER_LEFT

The following table enumerates the standard joint connections.

7 WRIST_LEFT ELBOW_LEFT

8 HAND_LEFT WRIST_LEFT

9 HANDTIP_LEFT HAND_LEFT

10 THUMB_LEFT WRIST_LEFT

11 CLAVICLE_RIGHT SPINE_CHEST

12 SHOULDER_RIGHT CLAVICLE_RIGHT

13 ELBOW_RIGHT SHOULDER_RIGHT

14 WRIST_RIGHT ELBOW_RIGHT

15 HAND_RIGHT WRIST_RIGHT

16 HANDTIP_RIGHT HAND_RIGHT

17 THUMB_RIGHT WRIST_RIGHT

18 HIP_LEFT PELVIS

19 KNEE_LEFT HIP_LEFT

20 ANKLE_LEFT KNEE_LEFT

21 FOOT_LEFT ANKLE_LEFT

22 HIP_RIGHT PELVIS

23 KNEE_RIGHT HIP_RIGHT

24 ANKLE_RIGHT KNEE_RIGHT

25 FOOT_RIGHT ANKLE_RIGHT

26 HEAD NECK

27 NOSE HEAD

28 EYE_LEFT HEAD

29 EAR_LEFT HEAD

30 EYE_RIGHT HEAD

31 EAR_RIGHT HEAD

INDEX JOINT NAME PARENT JOINT

Next steps
Body tracking index map

Azure Kinect body tracking index map
1/24/2020 • 2 minutes to read • Edit Online

NOTE

Using body index map

Next steps

The body index map includes the instance segmentation map for each body in the depth camera capture. Each
pixel maps to the corresponding pixel in the depth or IR image. The value for each pixel represents which body the
pixel belongs to. It can be either background (value K4ABT_BODY_INDEX_MAP_BACKGROUND) or the index of a detected
k4abt_body_t .

The body index is different than the body id. You can query the body id from a given body index by calling API:
k4abt_frame_get_body_id().

The body index map is stored as a k4a_image_t and has the same resolution as the depth or IR image. Each pixel is
an 8-bit value. It can be queried from a k4abt_frame_t by calling k4abt_frame_get_body_index_map . The developer is
responsible for releasing the memory for the body index map by calling k4a_image_release() .

Build your first body tracking app

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/body-index-map.md
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga1d612404d133a279af847974e9359a92.html#ga1d612404d133a279af847974e9359a92

About Azure Kinect Sensor SDK
11/12/2019 • 2 minutes to read • Edit Online

Features

Tools

Sensor SDK

Next steps

This article provides an overview of the Azure Kinect Sensor software development kit (SDK), its features, and
tools.

The Azure Kinect Sensor SDK provides cross-platform low-level access for Azure Kinect device configuration and
hardware sensors streams, including:

Depth camera access and mode control (a passive IR mode, plus wide and narrow field-of-view depth modes)
RGB camera access and control (for example, exposure and white balance)
Motion sensor (gyroscope and accelerometer) access
Synchronized Depth-RGB camera streaming with configurable delay between cameras
External device synchronization control with configurable delay offset between devices
Camera frame meta-data access for image resolution, timestamp, etc.
Device calibration data access

An Azure Kinect viewer to monitor device data streams and configure different modes.
An Azure Kinect recorder and playback reader API that uses the Matroska container format.
An Azure Kinect DK firmware update tool.

Download Sensor SDK.
The Sensor SDK is available in open source on GitHub.
For more information about usage, see Sensor SDK API documentation.

Now you learned about Azure Kinect sensor SDK, you can also:

Download sensor SDK code

Find and open device

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/about-sensor-sdk.md
https://github.com/microsoft/azure-kinect-sensor-sdk
https://microsoft.github.io/azure-kinect-sensor-sdk/master/index.html

Find then open the Azure Kinect device
11/12/2019 • 2 minutes to read • Edit Online

Discover the number of connected devices

uint32_t device_count = k4a_device_get_installed_count();

printf("Found %d connected devices:\n", device_count);

Open a device

k4a_device_t device = NULL;

for (uint8_t deviceIndex = 0; deviceIndex < device_count; deviceIndex++)
{
 if (K4A_RESULT_SUCCEEDED != k4a_device_open(deviceIndex, &device))
 {
 printf("%d: Failed to open device\n", deviceIndex);
 continue;
 }

 ...

 k4a_device_close(device);
}

Identify a specific device

This article describes how you can find, then open your Azure Kinect DK. The article explains how to handle the
case where there are multiple devices connected to your machine.

You can also refer to the SDK Enumerate Example that demonstrates how to use the functions in this article.

The following functions are covered:

k4a_device_get_installed_count()

k4a_device_open()

k4a_device_get_serialnum()

k4a_device_close()

First get the count of currently connected Azure Kinect devices using k4a_device_get_installed_count() .

To get information about a device, or to read data from it, you need to first open a handle to the device using
k4a_device_open() .

The index parameter of k4a_device_open() indicates which device to open if there are more than one connected.
If you only expect a single device to be connected, you can pass an argument of K4A_DEVICE_DEFAULT or 0 to
indicate the first device.

Anytime you open a device you need to call k4a_device_close() when you're done using the handle. No other
handles can be opened to the same device until you've closed the handle.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/find-then-open-device.md
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/examples/enumerate
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaf7d19df0f73f8e4dfaa21e1b4b719ecc.html#gaf7d19df0f73f8e4dfaa21e1b4b719ecc
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga3d4eb5dfbf4d576d4978b66ea419f113.html#ga3d4eb5dfbf4d576d4978b66ea419f113
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga798489af207ff1c99f2285ff6b08bc22.html#ga798489af207ff1c99f2285ff6b08bc22
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga7a3931d9a690b3971caaac83b43f9423.html#ga7a3931d9a690b3971caaac83b43f9423
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaf7d19df0f73f8e4dfaa21e1b4b719ecc.html#gaf7d19df0f73f8e4dfaa21e1b4b719ecc
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga3d4eb5dfbf4d576d4978b66ea419f113.html#ga3d4eb5dfbf4d576d4978b66ea419f113
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga3d4eb5dfbf4d576d4978b66ea419f113.html#ga3d4eb5dfbf4d576d4978b66ea419f113
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga7a3931d9a690b3971caaac83b43f9423.html#ga7a3931d9a690b3971caaac83b43f9423

char *serial_number = NULL;
size_t serial_number_length = 0;

if (K4A_BUFFER_RESULT_TOO_SMALL != k4a_device_get_serialnum(device, NULL, &serial_number_length))
{
 printf("%d: Failed to get serial number length\n", deviceIndex);
 k4a_device_close(device);
 device = NULL;
 continue;
}

serial_number = malloc(serial_number_length);
if (serial_number == NULL)
{
 printf("%d: Failed to allocate memory for serial number (%zu bytes)\n", deviceIndex,
serial_number_length);
 k4a_device_close(device);
 device = NULL;
 continue;
}

if (K4A_BUFFER_RESULT_SUCCEEDED != k4a_device_get_serialnum(device, serial_number, &serial_number_length))
{
 printf("%d: Failed to get serial number\n", deviceIndex);
 free(serial_number);
 serial_number = NULL;
 k4a_device_close(device);
 device = NULL;
 continue;
}

printf("%d: Device \"%s\"\n", deviceIndex, serial_number);

Open the default device

k4a_device_t device = NULL;
uint32_t device_count = k4a_device_get_installed_count();

if (device_count != 1)
{
 printf("Unexpected number of devices found (%d)\n", device_count);
 goto Exit;
}

if (K4A_RESULT_SUCCEEDED != k4a_device_open(K4A_DEVICE_DEFAULT, &device))
{
 printf("Failed to open device\n");
 goto Exit;
}

The order devices enumerate by index won't change until devices are attached or detached. To identify a physical
device, you should use the device's serial number.

To read the serial number from the device, use the k4a_device_get_serialnum() function after you've opened a
handle.

This example demonstrates how to allocate the right amount of memory to store the serial number.

In most applications, there will only be a single Azure Kinect DK attached to the same computer. If you only need
to connect to the single expected device, you can call k4a_device_open() with index of K4A_DEVICE_DEFAULT to
open the first device.

https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga798489af207ff1c99f2285ff6b08bc22.html#ga798489af207ff1c99f2285ff6b08bc22
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga3d4eb5dfbf4d576d4978b66ea419f113.html#ga3d4eb5dfbf4d576d4978b66ea419f113

Next steps
Retrieve Images

Retrieve IMU Samples

Retrieve Azure Kinect image data
11/12/2019 • 2 minutes to read • Edit Online

Configure and start the device

k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
config.camera_fps = K4A_FRAMES_PER_SECOND_30;
config.color_format = K4A_IMAGE_FORMAT_COLOR_MJPG;
config.color_resolution = K4A_COLOR_RESOLUTION_2160P;
config.depth_mode = K4A_DEPTH_MODE_NFOV_UNBINNED;

if (K4A_RESULT_SUCCEEDED != k4a_device_start_cameras(device, &config))
{
 printf("Failed to start device\n");
 goto Exit;
}

Stabilization

Get a capture from the device

This page provides details about how to retrieve images from the Azure Kinect. The article demonstrates how to
capture and access images coordinated between the device's color and depth cameras.device. To access images,
you must first open and configure the device, then you can capture images. Before you configure and capture an
image, you must Find and open device.

You can also refer to the SDK Streaming Example that demonstrates how to use the functions in this article.

The following functions are covered:

k4a_device_start_cameras()

k4a_device_get_capture()

k4a_capture_get_depth_image()

k4a_image_get_buffer()

k4a_image_release()

k4a_capture_release()

k4a_device_stop_cameras()

The two cameras available on your Kinect device support multiple modes, resolutions, and output formats. For a
complete list, refer to the Azure Kinect Development Kit hardware specifications.

The streaming configuration is set using values in the k4a_device_configuration_t structure.

Once cameras are started, they'll continue to capture data until k4a_device_stop_cameras() is called or the device
is closed.

When starting up devices using the multi device synchronization feature, it is highly recommended to do so using
a fixed exposure setting. With a manual exposure set, it can take up to eight captures from the device before
images and framerate stabilize. With auto exposure, it can take up to 20 captures before images and framerate
stabilize.

Images are captured from the device in a correlated manner. Each captured image contains a depth image, an IR

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/retrieve-images.md
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/examples/streaming
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaad7a85e1e5471810262442fc4a8e217a.html#gaad7a85e1e5471810262442fc4a8e217a
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga4dac757a33657f4d3dbf1ae8b21c158a.html#ga4dac757a33657f4d3dbf1ae8b21c158a
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gafa03513da96bf6b8c254fc11a04ee6d6.html#gafa03513da96bf6b8c254fc11a04ee6d6
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga2ef070cf4e543cd0f726478af332546e.html#ga2ef070cf4e543cd0f726478af332546e
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga27c81863b13fafc3934a32935a014e9f.html#ga27c81863b13fafc3934a32935a014e9f
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga0ed6f74ec403c3eac1b8ef3afb32cee6.html#ga0ed6f74ec403c3eac1b8ef3afb32cee6
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga4fa0e0a011a7105309ad97f081a5d6b8.html#ga4fa0e0a011a7105309ad97f081a5d6b8
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__device__configuration__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga4fa0e0a011a7105309ad97f081a5d6b8.html#ga4fa0e0a011a7105309ad97f081a5d6b8

// Capture a depth frame
switch (k4a_device_get_capture(device, &capture, TIMEOUT_IN_MS))
{
case K4A_WAIT_RESULT_SUCCEEDED:
 break;
case K4A_WAIT_RESULT_TIMEOUT:
 printf("Timed out waiting for a capture\n");
 continue;
 break;
case K4A_WAIT_RESULT_FAILED:
 printf("Failed to read a capture\n");
 goto Exit;
}

Get an image from the capture

Access image buffers

// Access the depth16 image
k4a_image_t image = k4a_capture_get_depth_image(capture);
if (image != NULL)
{
 printf(" | Depth16 res:%4dx%4d stride:%5d\n",
 k4a_image_get_height_pixels(image),
 k4a_image_get_width_pixels(image),
 k4a_image_get_stride_bytes(image));

 // Release the image
 k4a_image_release(image);
}

// Release the capture
k4a_capture_release(capture);

image, a color image, or a combination of images.

By default, the API will only return a capture once it has received all of the requested images for the streaming
mode. You can configure the API to return partial captures with only depth or color images as soon as they're
available by clearing the synchronized_images_only parameter of the k4a_device_configuration_t .

Once the API has successfully returned a capture, you must call k4a_capture_release() when you have completed
using the capture object.

To retrieve a captured image, call the appropriate function for each image type. One of:

k4a_capture_get_color_image()

k4a_capture_get_depth_image()

k4a_capture_get_ir_image()

You must call k4a_image_release() on any k4a_image_t handle returned by these functions once you're done
using the image.

k4a_image_t has many accessor functions to get properties of the image.

To access the image's memory buffer, use k4a_image_get_buffer.

The following example demonstrates how to access a captured depth image. This same principle applies to other
image types. However, make sure you replace the image-type variable with the correct image type, such as IR, or
color.

https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__device__configuration__t_a8208974f05d89fc1362c6a0900bdef4d.html#a8208974f05d89fc1362c6a0900bdef4d
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__device__configuration__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga0ed6f74ec403c3eac1b8ef3afb32cee6.html#ga0ed6f74ec403c3eac1b8ef3afb32cee6
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga683e440b5f22215a2de58d7fa140488c.html#ga683e440b5f22215a2de58d7fa140488c
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gafa03513da96bf6b8c254fc11a04ee6d6.html#gafa03513da96bf6b8c254fc11a04ee6d6
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga1531c3fa76a7c174b8f2eab24de91794.html#ga1531c3fa76a7c174b8f2eab24de91794
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga27c81863b13fafc3934a32935a014e9f.html#ga27c81863b13fafc3934a32935a014e9f
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__image__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__image__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga2ef070cf4e543cd0f726478af332546e.html#ga2ef070cf4e543cd0f726478af332546e

Next steps
Now you know how to capture, and coordinate the cameras' images between the color and depth, using your
Azure Kinect device. You also can:

Retrieve IMU samples

Access microphones

Retrieve Azure Kinect IMU samples
11/12/2019 • 2 minutes to read • Edit Online

Configure and start cameras

NOTE

k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
config.camera_fps = K4A_FRAMES_PER_SECOND_30;
config.color_format = K4A_IMAGE_FORMAT_COLOR_MJPG;
config.color_resolution = K4A_COLOR_RESOLUTION_2160P;

if (K4A_RESULT_SUCCEEDED != k4a_device_start_cameras(device, &config))
{
 printf("Failed to start cameras\n");
 goto Exit;
}

if (K4A_RESULT_SUCCEEDED != k4a_device_start_imu(device))
{
 printf("Failed to start imu\n");
 goto Exit;
}

Access IMU samples

The Azure Kinect device provides access to Inertial Motion Units (IMUs), including both the accelerometer and
gyroscope types. To access IMUs samples, you must first open and configure your device, then capture IMU data.
For more information, see find and open device.

IMU samples are generated at a much higher frequency than images. Samples are reported to the host at a lower
rate than they're sampled. When waiting for an IMU sample, multiple samples will frequently become available at
the same time.

See the Azure Kinect DK hardware specification for details on the IMU reporting rate.

IMU sensors can only work when the color and/or the depth cameras are running. IMU sensors cannot work alone.

To start the cameras, use k4a_device_start_cameras().

Each k4a_imu_sample_t contains an accelerometer and gyroscope reading captured at nearly the same time.

You can get the IMU samples either on the same thread you get image captures, or on separate threads.

To retrieve IMU samples as soon as they're available, you may want to call k4a_device_get_imu_sample() on its own
thread. The API also has sufficient internal queuing to allow you to only check for samples after each image
capture is returned.

Because there's some internal queueing of IMU samples, you can use the following pattern without dropping any
data:

1. Wait on a capture, at any frames rate.
2. Process the capture.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/retrieve-imu-samples.md
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaad7a85e1e5471810262442fc4a8e217a.html#gaad7a85e1e5471810262442fc4a8e217a
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__imu__sample__t.html#details
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga8e5913b3bb94a453c7143bbd6e399a0e.html#ga8e5913b3bb94a453c7143bbd6e399a0e

Usage example
k4a_imu_sample_t imu_sample;

// Capture a imu sample
switch (k4a_device_get_imu_sample(device, &imu_sample, TIMEOUT_IN_MS))
{
case K4A_WAIT_RESULT_SUCCEEDED:
 break;
case K4A_WAIT_RESULT_TIMEOUT:
 printf("Timed out waiting for a imu sample\n");
 continue;
 break;
case K4A_WAIT_RESULT_FAILED:
 printf("Failed to read a imu sample\n");
 goto Exit;
}

// Access the accelerometer readings
if (imu_sample != NULL)
{
 printf(" | Accelerometer temperature:%.2f x:%.4f y:%.4f z: %.4f\n",
 imu_sample.temperature,
 imu_sample.acc_sample.xyz.x,
 imu_sample.acc_sample.xyz.y,
 imu_sample.acc_sample.xyz.z);
}

Next steps

3. Retrieve all the queued IMU samples.
4. Repeat waiting on the next capture.

To retrieve all the currently queued IMU samples, you can call k4a_device_get_imu_sample() with a timeout_in_ms

of 0 in a loop until the function returns K4A_WAIT_RESULT_TIMEOUT . K4A_WAIT_RESULT_TIMEOUT indicates that there are
no queued samples and none have arrived in the timeout specified.

Now you know how to work with IMU samples, you also can

Access microphone input data

https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga8e5913b3bb94a453c7143bbd6e399a0e.html#ga8e5913b3bb94a453c7143bbd6e399a0e

Access Azure Kinect DK microphone input data
11/15/2019 • 2 minutes to read • Edit Online

Next steps

The Speech SDK quickstarts provide examples of how to use the Azure Kinect DK microphone array in various
programming languages. For example, see the Recognize speech in C++ on Windows by using the Speech
SDK quickstart. The code is available from GitHub.

Access the microphone array also through Windows API. See the following docs for details on Windows
documentation:

Windows Audio architecture
Windows.Media.Capture documentation
Tutorial for webcam capture
USB audio information

You can also review the microphone array hardware specification.

Speech Services SDK

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/access-mics.md
https://docs.microsoft.com/azure/cognitive-services/speech-service
https://github.com/azure-samples/cognitive-services-speech-sdk/tree/master/quickstart/cpp-windows
https://docs.microsoft.com/windows-hardware/drivers/audio/windows-audio-architecture
https://docs.microsoft.com/uwp/api/windows.media.capture
https://docs.microsoft.com/windows/uwp/audio-video-camera/basic-photo-video-and-audio-capture-with-mediacapture
https://docs.microsoft.com/windows-hardware/drivers/audio/usb-2-0-audio-drivers
https://docs.microsoft.com/azure/cognitive-services/speech-service/

Use Azure Kinect Sensor SDK image transformations
11/12/2019 • 6 minutes to read • Edit Online

k4a_transformation functions

k4a_transformation_depth_image_to_color_camera
Overview

Follow the specific functions to use and transform images between coordinated camera systems in your Azure
Kinect DK.

All functions prefixed with k4a_transformation operate on whole images. They require the transformation handle
k4a_transformation_t obtained via k4a_transformation_create() and are unallocated via
k4a_transformation_destroy(). You can also refer to the SDK Transformation Example that demonstrates how to
use the three functions in this topic.

The following functions are covered:

k4a_transformation_depth_image_to_color_camera()

k4a_transformation_depth_image_to_color_camera_custom()

k4a_transformation_color_image_to_depth_camera()

k4a_transformation_depth_image_to_point_cloud()

The function k4a_transformation_depth_image_to_color_camera() transforms the depth map from the viewpoint
of the depth camera into the viewpoint of the color camera. This function is designed to produce so-called RGB-D
images, where D represents an additional image channel recording the depth value. As seen in the figure below,
the color image and the output of k4a_transformation_depth_image_to_color_camera() look as if they were taken
from the same viewpoint, that is, the viewpoint of the color camera.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/use-image-transformation.md
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__transformation__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga853a1a5b6d521bbdf523a69e890c4f10.html#ga853a1a5b6d521bbdf523a69e890c4f10
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga7d3ecaae66f26c1a89da9042b1bc6d44.html#ga7d3ecaae66f26c1a89da9042b1bc6d44
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/examples/transformation
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gafacffb5f781a9c2df30d4a16241cd514.html#gafacffb5f781a9c2df30d4a16241cd514
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gac00dd00e7612a86382e3d0a130f276bb.html#gac00dd00e7612a86382e3d0a130f276bb
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaf3a941f07bb0185cd7a72699a648fc29.html#gaf3a941f07bb0185cd7a72699a648fc29
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga7385eb4beb9d8892e8a88cf4feb3be70.html#ga7385eb4beb9d8892e8a88cf4feb3be70
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gafacffb5f781a9c2df30d4a16241cd514.html#gafacffb5f781a9c2df30d4a16241cd514
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gafacffb5f781a9c2df30d4a16241cd514.html#gafacffb5f781a9c2df30d4a16241cd514

Implementation

Parameters

k4a_transformation_depth_image_to_color_camera_custom
Overview

Implementation

Parameters

k4a_transformation_color_image_to_depth_camera
Overview

Implementation

This transformation function is more complex than simply calling k4a_calibration_2d_to_2d() for every pixel. It
warps a triangle mesh from the geometry of the depth camera into the geometry of the color camera. The triangle
mesh is used to avoid generating holes in the transformed depth image. A Z-buffer ensures that occlusions are
handled correctly. GPU acceleration is enabled for this function by default.

Input parameters are the transformation handle and a depth image. The depth image resolution must match the
depth_mode specified at creation of the transformation handle. For example, if the transformation handle was

created using the 1024x1024 K4A_DEPTH_MODE_WFOV_UNBINNED mode, the resolution of the depth image must be
1024x1024 pixels. The output is a transformed depth image that needs to be allocated by the user via calling
k4a_image_create(). The resolution of the transformed depth image must match the color_resolution specified at
creation of the transformation handle. For example, if the color resolution was set to K4A_COLOR_RESOLUTION_1080P ,
the output image resolution must be 1920x1080 pixels. The output image stride is set to width * sizeof(uint16_t)

, as the image stores 16-bit depth values.

The function k4a_transformation_depth_image_to_color_camera_custom() transforms the depth map and a
custom image from the viewpoint of the depth camera into the viewpoint of the color camera. As an extension of
k4a_transformation_depth_image_to_color_camera(), this function is designed to produce a corresponding custom
image for which each pixel matches the corresponding pixel coordinates of the color camera additional to the
transformed depth image.

This transformation function produces the transformed depth image the same way as
k4a_transformation_depth_image_to_color_camera(). To transform the custom image, this function provides
options of using linear interpolation or nearest neighbor interpolation. Using linear interpolation could create new
values in the transformed custom image. Using nearest neighbor interpolation will prevent values not present in
the original image from appearing in the output image but will result in less smooth image. The custom image
should be single channel 8-bit or 16-bit. GPU acceleration is enabled for this function by default.

Input parameters are the transformation handle, a depth image, a custom image and the interpolation type. The
depth image and custom image resolution must match the depth_mode specified at creation of the transformation
handle. For example, if the transformation handle was created using the 1024x1024 K4A_DEPTH_MODE_WFOV_UNBINNED

mode, the resolution of the depth image and custom image must be 1024x1024 pixels. The interpolation_type

should be either K4A_TRANSFORMATION_INTERPOLATION_TYPE_LINEAR or K4A_TRANSFORMATION_INTERPOLATION_TYPE_NEAREST .
The output is a transformed depth image and a transformed custom image that need to be allocated by the user
via calling k4a_image_create(). The resolution of the transformed depth image and transformed custom image
must match the color_resolution specified at creation of the transformation handle. For example, if the color
resolution was set to K4A_COLOR_RESOLUTION_1080P , the output image resolution must be 1920x1080 pixels. The
output depth image stride is set to width * sizeof(uint16_t) , as the image stores 16-bit depth values. The input
custom image and transformed custom image must be of format K4A_IMAGE_FORMAT_CUSTOM8 or
K4A_IMAGE_FORMAT_CUSTOM16 , corresponding image stride should be set accordingly.

The function k4a_transformation_color_image_to_depth_camera() transforms the color image from the viewpoint
of the color camera into the viewpoint of the depth camera (see figure above). It can be used to generate RGB-D
images.

For every pixel of the depth map, the function uses the pixel’s depth value to compute the corresponding subpixel

https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga3b6bf6dedbfe67468e2f895dcce68ed4.html#ga3b6bf6dedbfe67468e2f895dcce68ed4
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga859554581bb97a620ff8e92a893e71ef.html#ga859554581bb97a620ff8e92a893e71ef
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gac00dd00e7612a86382e3d0a130f276bb.html#gac00dd00e7612a86382e3d0a130f276bb
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gafacffb5f781a9c2df30d4a16241cd514.html#gafacffb5f781a9c2df30d4a16241cd514
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gafacffb5f781a9c2df30d4a16241cd514.html#gafacffb5f781a9c2df30d4a16241cd514
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga859554581bb97a620ff8e92a893e71ef.html#ga859554581bb97a620ff8e92a893e71ef
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaf3a941f07bb0185cd7a72699a648fc29.html#gaf3a941f07bb0185cd7a72699a648fc29

Parameters

k4a_transformation_depth_image_to_point_cloud
Overview

Implementation

Parameters

Samples

Next steps

coordinate in the color image. We then look up the color value at this coordinate in the color image. Bilinear
interpolation is performed in the color image to obtain the color value at subpixel precision. A pixel that does not
have an associated depth reading is assigned to a BGRA value of [0,0,0,0] in the output image. GPU
acceleration is enabled for this function by default. As this method produces holes in the transformed color image
and does not handle occlusions, we recommend using the function
k4a_transformation_depth_image_to_color_camera() instead.

The input parameters are the transformation handle, a depth image, and a color image. The resolutions of depth
and color images must match the depth_mode and color_resolution specified at creation of the transformation
handle. The output is a transformed color image that needs to be allocated by the user via calling
k4a_image_create(). The resolution of the transformed color image must match the depth_resolution specified at
creation of the transformation handle. The output image stores four 8-bit values representing BGRA for every
pixel. Therefore, the stride of the image is width * 4 * sizeof(uint8_t) . The data order is pixel interleaved, that is,
blue value - pixel 0, green value - pixel 0, red value - pixel 0, alpha value - pixel 0, blue value - pixel 1 and so on.

The function k4a_transformation_depth_image_to_point_cloud() converts a 2D depth map taken by a camera into
a 3D point cloud in the coordinate system of the same camera. The camera can thereby be the depth or color
camera.

The function gives equivalent results to running k4a_calibration_2d_to_2d() for every pixel, but is computationally
more efficient. When calling k4a_transformation_create(), we precompute a so-called xy-lookup table that stores x-
and y-scale factors for every image pixel. When calling k4a_transformation_depth_image_to_point_cloud(), we
obtain a pixel’s 3D X-coordinate by multiplying the pixel’s x-scale factor with the pixel’s Z-coordinate. Analogously,
the 3D Y-coordinate is computed by multiplication with the y-scale factor. The fast point cloud example of the SDK
demonstrates how the xy-table is computed. Users can follow the example code to implement their own version of
this function, for example, to speed up their GPU pipeline.

The input parameters are the transformation handle, a camera specifier, and a depth image. If the camera specifier
is set to depth, the resolution of the depth image must match the depth_mode specified at creation of the
transformation handle. Otherwise, if the specifier is set to the color camera, the resolution must match the
resolution of the chosen color_resolution. The output parameter is an XYZ image that needs to be allocated by the
user via calling k4a_image_create(). The XYZ image resolution must match the resolution of the input depth map.
We store three signed 16-bit coordinate values in millimeter for every pixel. The XYZ image stride is therefore set
to width * 3 * sizeof(int16_t) . The data order is pixel interleaved, that is, X-coordinate – pixel 0, Y-coordinate –
pixel 0, Z-coordinate – pixel 0, X-coordinate – pixel 1 and so on. If a pixel cannot be converted to 3D, the function
assigns the values [0,0,0] to the pixel.

Transformation example

Now you know how to use Azure Kinect sensor SDK image transformation functions, you also can learn about

Azure Kinect sensor SDK calibration functions

Also you can review

Coordinate systems

https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gafacffb5f781a9c2df30d4a16241cd514.html#gafacffb5f781a9c2df30d4a16241cd514
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga859554581bb97a620ff8e92a893e71ef.html#ga859554581bb97a620ff8e92a893e71ef
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga7385eb4beb9d8892e8a88cf4feb3be70.html#ga7385eb4beb9d8892e8a88cf4feb3be70
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga3b6bf6dedbfe67468e2f895dcce68ed4.html#ga3b6bf6dedbfe67468e2f895dcce68ed4
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga853a1a5b6d521bbdf523a69e890c4f10.html#ga853a1a5b6d521bbdf523a69e890c4f10
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga7385eb4beb9d8892e8a88cf4feb3be70.html#ga7385eb4beb9d8892e8a88cf4feb3be70
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/examples/fastpointcloud
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga859554581bb97a620ff8e92a893e71ef.html#ga859554581bb97a620ff8e92a893e71ef
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/examples/transformation

Use Azure Kinect calibration functions
11/12/2019 • 3 minutes to read • Edit Online

Retrieve calibration data

OpenCV Compatibility

Coordinate Transformation Functions

The calibration functions allow for transforming points between the coordinate systems of each sensor on the
Azure Kinect device. Applications requiring conversion of whole images may take advantage of the accelerated
operations available in transformation functions.

It is necessary to retrieve the device calibration to perform coordinate system transformations. The calibration data
is stored in the k4a_calibration_t data type. It is obtained from the device via the function
k4a_device_get_calibration(). The calibration data is not only specific to each device, but also to the operating mode
of the cameras. Hence k4a_device_get_calibration() requires the depth_mode and color_resolution parameters as
input.

The calibration parameters are compatible with OpenCV. For more information about the individual camera
calibration parameters, see also OpenCV documentation. Also see OpenCV compatibility example of the SDK that
demonstrates conversion between the k4a_calibration_t type and the corresponding OpenCV data structures.

The figure below shows the different coordinate systems of Azure Kinect as well as the functions to convert
between them. We omit the 3D coordinate systems of gyroscope and accelerometer to keep the figure simple.

Remark on lens distortion: 2D coordinates always refer to the distorted image in the SDK. The undistortion
example of the SDK demonstrates image undistortion. In general, 3D points will never be affected by lens
distortion.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/use-calibration-functions.md
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__calibration__t.html#details
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga4e43940d8d8db48da266c7a7842c8d78.html#ga4e43940d8d8db48da266c7a7842c8d78
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga4e43940d8d8db48da266c7a7842c8d78.html#ga4e43940d8d8db48da266c7a7842c8d78
https://opencv.org/
https://docs.opencv.org/3.2.0/d9/d0c/group__calib3d.html#gga7041b2a9c8f9f8ee93a2796981bc5546a204766e24f2e413e7a7c9f8b9e93f16c
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/examples/opencv_compatibility
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__calibration__t.html#details
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/examples/undistort

Convert between 3D coordinate systems

Convert between 2D and 3D coordinate systems

Converting between 2D coordinate systems

Related samples

Next steps

The function k4a_calibration_3d_to_3d() converts a 3D point of the source coordinate system to a 3D point of the
target coordinate system using the camera's extrinsic calibration. Source and target can be set to any of the four
3D coordinate systems, that is, color camera, depth camera, gyroscope, or accelerometer. If source and target are
identical, the unmodified input 3D point is returned as output.

The function k4a_calibration_3d_to_2d() converts a 3D point of the source coordinate system to a 2D pixel
coordinate of the target camera. This function is often referred to as project function. While the source can be set
to any of the four 3D coordinate systems, the target must be the depth or color camera. If source and target are
different, the input 3D point is converted to the 3D coordinate system of the target camera using
k4a_calibration_3d_to_3d(). Once the 3D point is represented in the target camera coordinate system, the
corresponding 2D pixel coordinates are computed using the target camera’s intrinsic calibration. If a 3D point falls
out of the visible area of the target camera, the valid value is set to 0.

The function k4a_calibration_2d_to_3d() converts a 2D pixel coordinate of the source camera to a 3D point of the
target camera coordinate system. The source must be color or depth camera. The target can be set to any of the
four 3D coordinate systems. In addition to the 2D pixel coordinate, the pixel’s depth value (in millimeters) in the
source camera’s image is required as an input to the function, one way to derive the depth value in the color
camera geometry is to use the function k4a_transformation_depth_image_to_color_camera(). The function
computes the 3D ray leading from the source camera’s focal point through the specified pixel coordinate using the
source camera’s intrinsic calibration. The depth value is then used to find the exact location of the 3D point on this
ray. This operation is often referred to as unproject function. If source and target cameras are different, the
function transforms the 3D point to the coordinate system of the target via k4a_calibration_3d_to_3d(). If a 2D
pixel coordinate falls out of the visible area of the source camera, the valid value is set to 0.

The function k4a_calibration_2d_to_2d() converts a 2D pixel coordinate of the source camera to a 2D pixel
coordinate of the target camera. Source and target must be set to color or depth camera. The function requires the
pixel’s depth value (in millimeters) in the source camera image as an input, one way to derive the depth value in
the color camera geometry is to use the function k4a_transformation_depth_image_to_color_camera(). It calls
k4a_calibration_2d_to_3d() to convert to a 3D point of the source camera system. It then calls
k4a_calibration_3d_to_2d() to convert to a 2D pixel coordinate of the target camera image. The valid value is set to
0, if k4a_calibration_2d_to_3d() or k4a_calibration_3d_to_2d() returns an invalid result.

OpenCV compatibility example
Undistortion example
Fast point cloud example

Now you know about camera calibrations, you may also learn how to

Capture device synchronization

Also you can review

Coordinate systems

https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaacd1eab997ef964b5e436afa5295726e.html#gaacd1eab997ef964b5e436afa5295726e
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga2ed8b51d727425caa942aab190fc2ba9.html#ga2ed8b51d727425caa942aab190fc2ba9
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaacd1eab997ef964b5e436afa5295726e.html#gaacd1eab997ef964b5e436afa5295726e
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga664602bdb48dab38117a6c1d14b880de.html#ga664602bdb48dab38117a6c1d14b880de
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gafacffb5f781a9c2df30d4a16241cd514.html#gafacffb5f781a9c2df30d4a16241cd514
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaacd1eab997ef964b5e436afa5295726e.html#gaacd1eab997ef964b5e436afa5295726e
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga3b6bf6dedbfe67468e2f895dcce68ed4.html#ga3b6bf6dedbfe67468e2f895dcce68ed4
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gafacffb5f781a9c2df30d4a16241cd514.html#gafacffb5f781a9c2df30d4a16241cd514
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga664602bdb48dab38117a6c1d14b880de.html#ga664602bdb48dab38117a6c1d14b880de
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga2ed8b51d727425caa942aab190fc2ba9.html#ga2ed8b51d727425caa942aab190fc2ba9
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga664602bdb48dab38117a6c1d14b880de.html#ga664602bdb48dab38117a6c1d14b880ded
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga2ed8b51d727425caa942aab190fc2ba9.html#ga2ed8b51d727425caa942aab190fc2ba9
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/examples/opencv_compatibility
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/examples/undistort
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/examples/fastpointcloud

Capture Azure Kinect device synchronization
11/12/2019 • 2 minutes to read • Edit Online

Device internal synchronization

Device external synchronization

Subordinate mode

k4a_device_configuration_t deviceConfig;
deviceConfig.wired_sync_mode = K4A_WIRED_SYNC_MODE_SUBORDINATE

Master mode

k4a_device_configuration_t deviceConfig;
deviceConfig.wired_sync_mode = K4A_WIRED_SYNC_MODE_MASTER;

Retrieving synchronization jack state

Next steps

The Azure Kinect hardware can align the capture time of color and depth images. Alignment between the cameras
on the same device is internal synchronization. Capture time alignment across multiple connected devices is
external synchronization.

Image capture between the individual cameras is synchronized in hardware. In every k4a_capture_t that contains
images from both the color and depth sensor, the images' timestamps are aligned based on the operating mode of
the hardware. By default the images of a capture are center of exposure aligned. The relative timing of depth and
color captures can be adjusted using the depth_delay_off_color_usec field of k4a_device_configuration_t.

See setup external synchronization for hardware setup.

The software for each connected device must be configured to operate in a master or subordinate mode. This
setting is configured on the k4a_device_configuration_t.

When using external synchronization, subordinate cameras should always be started before the master for the
timestamps to align correctly.

To programmatically retrieve the current state of the synchronization input and synchronization output jacks, use
the k4a_device_get_sync_jack function.

Now you know how to enable and capture device synchronization. You also can review how to use

Azure Kinect sensor SDK record and playback API

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/capture-device-synchronization.md
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__capture__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__device__configuration__t.html
https://support.microsoft.com/help/4494429/sync-multiple-azure-kinect-dk-devices
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__device__configuration__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga0209ac87bfd055163677321b0304e962.html#ga0209ac87bfd055163677321b0304e962

The Azure Kinect playback API
11/12/2019 • 3 minutes to read • Edit Online

Use the playback API

Open a record file

k4a_playback_t playback_handle = NULL;
if (k4a_playback_open("recording.mkv", &playback_handle) != K4A_RESULT_SUCCEEDED)
{
 printf("Failed to open recording\n");
 return 1;
}

uint64_t recording_length = k4a_playback_get_last_timestamp_usec(playback_handle);
printf("Recording is %lld seconds long\n", recording_length / 1000000);

k4a_playback_close(playback_handle);

Read captures

The sensor SDK provides an API for recording device data to a Matroska (.mkv) file. The Matroska container format
stores video tracks, IMU samples, and device calibration. Recordings can be generated using the provided
k4arecorder command-line utility. Recordings can also be customized and recorded directly using the record API.

For more information about the recording API, see k4a_record_create() .

For more information on the Matroska file format specifications, see the Recording File Format page.

Recording files can be opened using the playback API. The playback API provides access to sensor data in the same
format as the rest of the sensor SDK.

In the following example, we open a recording using k4a_playback_open() , print the recording length, and then
close the file with k4a_playback_close() .

Once the file is open, we can start reading captures from the recording. This next example will read each of the
captures in the file.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/record-playback-api.md
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gae14f4181e9688e710d1c80b215413831.html#gae14f4181e9688e710d1c80b215413831
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gacb254ac941b2ab3c202ca68f4537f368.html#gacb254ac941b2ab3c202ca68f4537f368
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga76f415f2076f1c8c544e094a649306ff.html#ga76f415f2076f1c8c544e094a649306ff

k4a_capture_t capture = NULL;
k4a_stream_result_t result = K4A_STREAM_RESULT_SUCCEEDED;
while (result == K4A_STREAM_RESULT_SUCCEEDED)
{
 result = k4a_playback_get_next_capture(playback_handle, &capture);
 if (result == K4A_STREAM_RESULT_SUCCEEDED)
 {
 // Process capture here
 k4a_capture_release(capture);
 }
 else if (result == K4A_STREAM_RESULT_EOF)
 {
 // End of file reached
 break;
 }
}
if (result == K4A_STREAM_RESULT_FAILED)
{
 printf("Failed to read entire recording\n");
 return 1;
}

Seek within a recording

// Seek to the beginning of the file
if (k4a_playback_seek_timestamp(playback_handle, 0, K4A_PLAYBACK_SEEK_BEGIN) != K4A_RESULT_SUCCEEDED)
{
 return 1;
}

// Seek to the end of the file
if (k4a_playback_seek_timestamp(playback_handle, 0, K4A_PLAYBACK_SEEK_END) != K4A_RESULT_SUCCEEDED)
{
 return 1;
}

// Seek to 10 seconds from the start
if (k4a_playback_seek_timestamp(playback_handle, 10 * 1000000, K4A_PLAYBACK_SEEK_BEGIN) !=
K4A_RESULT_SUCCEEDED)
{
 return 1;
}

// Seek to 10 seconds from the end
if (k4a_playback_seek_timestamp(playback_handle, -10 * 1000000, K4A_PLAYBACK_SEEK_END) != K4A_RESULT_SUCCEEDED)
{
 return 1;
}

Read tag information

Once we've reached the end of the file, we may want to go back and read it again. This process could be done by
reading backwards with k4a_playback_get_previous_capture() , but it could be very slow depending on the length of
the recording. Instead we can use the k4a_playback_seek_timestamp() function to go to a specific point in the file.

In this example, we specify timestamps in microseconds to seek to various points in the file.

Recordings can also contain various metadata such as the device serial number and firmware versions. This
metadata is stored in recording tags, which can be accessed using the k4a_playback_get_tag() function.

https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga54732e3aa0717e1ca4eb76ee385e878c.html#ga54732e3aa0717e1ca4eb76ee385e878c
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaea748994a121543bd77f90417cf428f6.html#gaea748994a121543bd77f90417cf428f6
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga320f966fc89b4ba0d758f787f70d5143.html#ga320f966fc89b4ba0d758f787f70d5143

// Print the serial number of the device used to record
char serial_number[256];
size_t serial_number_size = 256;
k4a_buffer_result_t buffer_result = k4a_playback_get_tag(playback_handle, "K4A_DEVICE_SERIAL_NUMBER",
&serial_number, &serial_number_size);
if (buffer_result == K4A_BUFFER_RESULT_SUCCEEDED)
{
 printf("Device serial number: %s\n", serial_number);
}
else if (buffer_result == K4A_BUFFER_RESULT_TOO_SMALL)
{
 printf("Device serial number too long.\n");
}
else
{
 printf("Tag does not exist. Device serial number was not recorded.\n");
}

Record tag list

TAG NAME DEFAULT VALUE K4A_RECORD_CONFIGURATION_T FIELD NOTES

K4A_COLOR_MODE "OFF" color_format /
color_resolution

Possible values: "OFF",
"MJPG_1080P",
"NV12_720P", "YUY2_720P",
and so on

K4A_DEPTH_MODE "OFF" depth_mode /
depth_track_enabled

Possible values: "OFF,
"NFOV_UNBINNED",
"PASSIVE_IR", and so on

K4A_IR_MODE "OFF" depth_mode /
ir_track_enabled

Possible values: "OFF",
"ACTIVE", "PASSIVE"

K4A_IMU_MODE "OFF" imu_track_enabled Possible values: "ON", "OFF"

K4A_CALIBRATION_FILE "calibration.json" N/A See
k4a_device_get_raw_calibration()

K4A_DEPTH_DELAY_NS "0" depth_delay_off_color_usec Value stored in nanoseconds,
API provides microseconds.

K4A_WIRED_SYNC_MODE "STANDALONE" wired_sync_mode Possible values:
"STANDALONE", "MASTER",
"SUBORDINATE"

K4A_SUBORDINATE_DELAY_NS "0" subordinate_delay_off_master_usecValue stored in nanoseconds,
API provides microseconds.

K4A_COLOR_FIRMWARE_VERSION "" N/A Device color firmware
version, for example "1.x.xx"

Below is a list of all the default tags that may be included in a recording file. Many of these values are available as
part of the k4a_record_configuration_t struct, and can be read with the k4a_playback_get_record_configuration()

function.

If a tag doesn't exist, it's assumed to have the default value.

https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__record__configuration__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_gaab54a85c1f1e98d170d009042b449255.html#gaab54a85c1f1e98d170d009042b449255
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__record__configuration__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga8c4e46642cee3115aeb0b33e2b43b24f.html#ga8c4e46642cee3115aeb0b33e2b43b24f

K4A_DEPTH_FIRMWARE_VERSION "" N/A Device depth firmware
version, for example "1.x.xx"

K4A_DEVICE_SERIAL_NUMBER "" N/A Recording device serial
number

K4A_START_OFFSET_NS "0" start_timestamp_offset_usec See Timestamp
Synchronization below.

K4A_COLOR_TRACK None N/A See Recording File Format -
Identifying tracks.

K4A_DEPTH_TRACK None N/A See Recording File Format -
Identifying tracks.

K4A_IR_TRACK None N/A See Recording File Format -
Identifying tracks.

K4A_IMU_TRACK None N/A See Recording File Format -
Identifying tracks.

TAG NAME DEFAULT VALUE K4A_RECORD_CONFIGURATION_T FIELD NOTES

Timestamp synchronization
The Matroska format requires that recordings must start with a timestamp of zero. When externally syncing
cameras, the first timestamp from of each device can be non-zero.

To preserve the original timestamps from the devices between recording and playback, the file stores an offset to
apply to the timestamps.

The K4A_START_OFFSET_NS tag is used to specify a timestamp offset so that files can be resynchronized after
recording. This timestamp offset can be added to each timestamp in the file to reconstruct the original device
timestamps.

The start offset is also available in the k4a_record_configuration_t struct.

https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__record__configuration__t.html

Get body tracking results
1/24/2020 • 2 minutes to read • Edit Online

Create a tracker

k4a_calibration_t sensor_calibration;
if (K4A_RESULT_SUCCEEDED != k4a_device_get_calibration(device, device_config.depth_mode,
K4A_COLOR_RESOLUTION_OFF, &sensor_calibration))
{
 printf("Get depth camera calibration failed!\n");
 return 0;
}

k4abt_tracker_t tracker = NULL;
k4abt_tracker_configuration_t tracker_config = K4ABT_TRACKER_CONFIG_DEFAULT;
if (K4A_RESULT_SUCCEEDED != k4abt_tracker_create(&sensor_calibration, tracker_config, &tracker))
{
 printf("Body tracker initialization failed!\n");
 return 0;
}

Capture depth and IR images

NOTE

Body Tracking SDK uses a body tracker object to process Azure Kinect DK captures and generates body tracking
results. It also maintains global status of the tracker, processing queues and the output queue. There are three
steps in using the body tracker :

Create a tracker
Capture depth and IR images using Azure Kinect DK
Enqueue the capture and pop the results.

The first step in using body tracking is to create a tracker and requires passing in the sensor calibration
k4a_calibration_t structure. The sensor calibration can be queried using the Azure Kinect Sensor SDK
k4a_device_get_calibration() function.

Image capture using Azure Kinect DK is covered in the retrieve images page.

K4A_DEPTH_MODE_NFOV_UNBINNED or K4A_DEPTH_MODE_WFOV_2X2BINNED modes are recommended for best performance and
accuracy. Do not use the K4A_DEPTH_MODE_OFF or K4A_DEPTH_MODE_PASSIVE_IR modes.

The supported Azure Kinect DK modes are described in the Azure Kinect DK hardware specification and
k4a_depth_mode_t enumerations.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/get-body-tracking-results.md
https://microsoft.github.io/azure-kinect-sensor-sdk/master/structk4a__calibration__t.html
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga4e43940d8d8db48da266c7a7842c8d78.html#ga4e43940d8d8db48da266c7a7842c8d78
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___enumerations_ga3507ee60c1ffe1909096e2080dd2a05d.html#ga3507ee60c1ffe1909096e2080dd2a05d

// Capture a depth frame
switch (k4a_device_get_capture(device, &capture, TIMEOUT_IN_MS))
{
case K4A_WAIT_RESULT_SUCCEEDED:
 break;
case K4A_WAIT_RESULT_TIMEOUT:
 printf("Timed out waiting for a capture\n");
 continue;
 break;
case K4A_WAIT_RESULT_FAILED:
 printf("Failed to read a capture\n");
 goto Exit;
}

Enqueue the capture and pop the results

Real-time processing

k4a_wait_result_t queue_capture_result = k4abt_tracker_enqueue_capture(tracker, sensor_capture, 0);
k4a_capture_release(sensor_capture); // Remember to release the sensor capture once you finish using it
if (queue_capture_result == K4A_WAIT_RESULT_FAILED)
{
 printf("Error! Adding capture to tracker process queue failed!\n");
 break;
}

k4abt_frame_t body_frame = NULL;
k4a_wait_result_t pop_frame_result = k4abt_tracker_pop_result(tracker, &body_frame, 0);
if (pop_frame_result == K4A_WAIT_RESULT_SUCCEEDED)
{
 // Successfully popped the body tracking result. Start your processing
 ...

 k4abt_frame_release(body_frame); // Remember to release the body frame once you finish using it
}

Synchronous processing

The tracker internally maintains an input queue and an output queue to asynchronously process the Azure Kinect
DK captures more efficiently. Use the k4abt_tracker_enqueue_capture() function to add a new capture to the input
queue. Use the k4abt_tracker_pop_result() function o pop a result from the output queue. Use of the timeout value
is dependent on the application and controls the queuing wait time.

Use this pattern for single-threaded applications that need real-time results and can accommodate dropped
frames. The simple_3d_viewer sample located in GitHub Azure-Kinect-Samples is an example of real-time
processing.

Use this pattern for applications that do not need real-time results or cannot accommodate dropped frames.

Processing throughput may be limited.

The simple_sample.exe sample located in GitHub Azure-Kinect-Samples is an example of synchronous processing.

https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga093becd9bb4a63f5f4d56f58097a7b1e.html#ga093becd9bb4a63f5f4d56f58097a7b1e
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_gaaf446fb1579cbbe0b6af824ee0a7458b.html#gaaf446fb1579cbbe0b6af824ee0a7458b
https://github.com/microsoft/azure-kinect-samples
https://github.com/microsoft/azure-kinect-samples

k4a_wait_result_t queue_capture_result = k4abt_tracker_enqueue_capture(tracker, sensor_capture,
K4A_WAIT_INFINITE);
k4a_capture_release(sensor_capture); // Remember to release the sensor capture once you finish using it
if (queue_capture_result != K4A_WAIT_RESULT_SUCCEEDED)
{
 // It should never hit timeout or error when K4A_WAIT_INFINITE is set.
 printf("Error! Adding capture to tracker process queue failed!\n");
 break;
}

k4abt_frame_t body_frame = NULL;
k4a_wait_result_t pop_frame_result = k4abt_tracker_pop_result(tracker, &body_frame, K4A_WAIT_INFINITE);
if (pop_frame_result != K4A_WAIT_RESULT_SUCCEEDED)
{
 // It should never hit timeout or error when K4A_WAIT_INFINITE is set.
 printf("Error! Popping body tracking result failed!\n");
 break;
}
// Successfully popped the body tracking result. Start your processing
...

k4abt_frame_release(body_frame); // Remember to release the body frame once you finish using it

Next steps
Access data in body frame

Access data in body frame
1/24/2020 • 2 minutes to read • Edit Online

Key components of a body frame

Access the collection of body structs

size_t num_bodies = k4abt_frame_get_num_bodies(body_frame);

for (size_t i = 0; i < num_bodies; i++)
{
 k4abt_skeleton_t skeleton;
 k4abt_frame_get_body_skeleton(body_frame, i, &skeleton);
 uint32_t id = k4abt_frame_get_body_id(body_frame, i);
}

This article describes the data contained in a body frame and the functions to access that data.

The following functions are covered:

k4abt_frame_get_body_id()
k4abt_frame_get_body_index_map()
k4abt_frame_get_body_skeleton()
k4abt_frame_get_capture()
k4abt_frame_get_num_bodies()
k4abt_frame_get_device_timestamp_usec()

Each body frame contains a collection of body structs, a 2D body index map, and the input capture that generated
this result.

Multiple bodies might be detected in a single capture. You can query the number of bodies by calling the
k4abt_frame_get_num_bodies() function.

You use the k4abt_frame_get_body_id() and k4abt_frame_get_body_skeleton() functions to iterate through each
body index to find the body ID and joint position/orientation information.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/access-data-body-frame.md
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga1d612404d133a279af847974e9359a92.html#ga1d612404d133a279af847974e9359a92
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga0e4f2d0d7e330d444de7070fb1fee4f6.html#ga0e4f2d0d7e330d444de7070fb1fee4f6
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_gac7032ab06268253538556750775064fb.html#gac7032ab06268253538556750775064fb
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_gad9eef11f6496bbfe997536c374217d9a.html#gad9eef11f6496bbfe997536c374217d9a
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga29ab088b1a0d1a246bdb5542e21aa3c3.html#ga29ab088b1a0d1a246bdb5542e21aa3c3
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga04be7b814b40296cd6b97044ed7283e4.html#ga04be7b814b40296cd6b97044ed7283e4
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga29ab088b1a0d1a246bdb5542e21aa3c3.html#ga29ab088b1a0d1a246bdb5542e21aa3c3
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga1d612404d133a279af847974e9359a92.html#ga1d612404d133a279af847974e9359a92
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_gac7032ab06268253538556750775064fb.html#gac7032ab06268253538556750775064fb

Access the body index map

k4a_image_t body_index_map = k4abt_frame_get_body_index_map(body_frame);
... // Do your work with the body index map
k4a_image_release(body_index_map);

Access the input capture

k4a_capture_t input_capture = k4abt_frame_get_capture(body_frame);
... // Do your work with the input capture
k4a_capture_release(input_capture);

Next steps

You use the k4abt_frame_get_body_index_map() function to access the body index map. Refer to body index map
for detailed explanation of the body index map. Make sure to release the body index map when it is no longer
needed.

The body tracker is an asynchronous API. The original capture may already have been released by the time the
result is popped. Use the k4abt_frame_get_capture() function to query the input capture used to generate this
body tracking result. The reference count for the k4a_capture_t is increased each time this function is called. Use
k4a_capture_release() function when the capture is no longer needed.

Azure Kinect Body Tracking SDK

https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_ga0e4f2d0d7e330d444de7070fb1fee4f6.html#ga0e4f2d0d7e330d444de7070fb1fee4f6
https://microsoft.github.io/azure-kinect-body-tracking/release/1.x.x/group__btfunctions_gad9eef11f6496bbfe997536c374217d9a.html#gad9eef11f6496bbfe997536c374217d9a
https://microsoft.github.io/azure-kinect-sensor-sdk/master/group___functions_ga0ed6f74ec403c3eac1b8ef3afb32cee6.html#ga0ed6f74ec403c3eac1b8ef3afb32cee6
https://microsoft.github.io/azure-kinect-body-tracking/

Add Azure Kinect library to your Visual Studio
project
11/12/2019 • 2 minutes to read • Edit Online

Install Azure Kinect NuGet package

Use Azure Kinect NuGet package

Next steps

This article walks you through the process of adding Azure Kinect NuGet package to your Visual Studio Project.

To install the Azure Kinect NuGet package:

1. You can find detailed instructions for installing a NuGet package in Visual Studio in the Quickstart: Install and
use a package in Visual Studio.

2. To add the package, you can use Package Manager UI by right-clicking References and choosing Manage
NuGet Packages from Solution Explorer.

3. Choose nuget.org as the Package source, select Browse tab, and search for Microsoft.Azure.Kinect.Sensor .
4. Select that package from the list and install.

Once the package is added, add header file includes to the source code, such as:

#include <k4a/k4a.h>

#include <k4arecord/record.h>

#include <k4arecord/playback.h>

Now you are ready to build your first application

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/add-library-to-project.md
https://docs.microsoft.com/nuget/quickstart/install-and-use-a-package-in-visual-studio
https://www.nuget.org

Update Azure Kinect DK firmware
1/8/2020 • 2 minutes to read • Edit Online

Prepare for firmware update

IMPORTANT

Update device firmware

Verify device firmware version

This document provides guidance on how to update device firmware on your Azure Kinect DK.

Azure Kinect DK doesn't update firmware automatically. You can use Azure Kinect Firmware Tool to update
firmware manually to the latest available version.

1. Download SDK.

2. Install the SDK.

3. In the SDK install location under (SDK install location)\tools\ you should find:

AzureKinectFirmwareTool.exe
A Firmware .bin file in the firmware folder, such as AzureKinectDK_Fw_1.5.926614.bin.

4. Connect your device to host PC and power it up also.

Keep the USB and power supply connected during the firmware update. Removing either connection during update may put
the firmware into a corrupted state.

1. Open a command prompt in the (SDK install location)\tools\ folder.

2. Update Firmware using the Azure Kinect Firmware Tool

AzureKinectFirmwareTool.exe -u <device_firmware_file.bin>

Example:

AzureKinectFirmwareTool.exe -u firmware\AzureKinectDK_Fw_1.5.926614.bin

3. Wait until the firmware update finishes. It can take a few minutes depending on the image size.

 >AzureKinectFirmwareTool.exe -q

1. Verify the firmware is updated.

AzureKinectFirmwareTool.exe -q

2. View the following example.

== Azure Kinect DK Firmware Tool == Device Serial Number: 000805192412 Current Firmware Versions: RGB
camera firmware: 1.6.102 Depth camera firmware: 1.6.75 Depth config file: 6109.7 Audio firmware: 1.6.14 Build
Config: Production Certificate Type: Microsoft ```

3. If you see the above output, your firmware is updated.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/update-device-firmware.md

Troubleshooting

Next steps

4. After firmware update, you can run Azure Kinect viewer to verify all sensors are working as expected.

Firmware updates can fail for several reasons. When a firmware update fails, try the following mitigation steps:

1. Try to run the firmware update command a second time.

2. Confirm the device is still connected by querying for the firmware version. AzureKinectFirmareTool.exe

3. If all else fails, follow the recovery steps to revert to the factory firmware and try again.

For any additional issues, see Microsoft support pages

Azure Kinect Firmware Tool

https://support.microsoft.com/help/4494277/reset-azure-kinect-dk
https://aka.ms/kinectsupport

Use Azure Kinect recorder with external synchronized
devices
11/12/2019 • 2 minutes to read • Edit Online

Prerequisites

External synchronization constraints

Record when each unit has a host PC

Subordinate-1

Subordinate-2

This article provides guidance on how the Azure Kinect Recorder can record data external synchronization
configured devices.

Set up multiple Azure Kinect DK units for external synchronization.

Master device can't have SYNC IN cable connected.
Master device must stream RGB camera to enable synchronization.
All units must use the same camera configuration (framerate and resolution).
All units must run the same device firmware (update firmware instructions).
All subordinate devices must be started before the master device.
The same exposure value should be set on all devices.
Each subordinate's Delay off master setting is relative to the master device.

In the example below, each device has its own dedicated host PC. It's recommended you connect devices to
dedicated PCs to prevent issues with USB bandwidth and CPU/GPU usage.

Device serial number: 000011590212
Device version: Rel; C: 1.5.78; D: 1.5.60[6109.6109]; A: 1.5.13
Device started
[subordinate mode] Waiting for signal from master

1. Set up recorder for the first unit

k4arecorder.exe --external-sync sub -e -8 -r 5 -l 10 sub1.mkv

2. Device starts waiting

Device serial number: 000011590212
Device version: Rel; C: 1.5.78; D: 1.5.60[6109.6109]; A: 1.5.13
Device started
[subordinate mode] Waiting for signal from master

1. Set up recorder for the second unit

k4arecorder.exe --external-sync sub -e -8 -r 5 -l 10 sub2.mkv

2. Device starts waiting

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/record-external-synchronized-units.md
https://support.microsoft.com/help/4494429

Master

Recording when multiple units connected to single host PC

Subordinate-1

Master

Playing recording

Tips

See also

1. Start recording on master

>k4arecorder.exe --external-sync master -e -8 -r 5 -l 10 master.mkv

2. Wait until recording finished

You can have multiple Azure Kinect DKs connected to a single host PC. However, that can be very demanding to
USB bandwidth and host compute. To reduce the demand:

Connect each device into own USB host controller.
Have a powerful GPU that can handle depth engine for each device.
Record only needed sensors and use lower framerate.

Always start subordinate devices first and the master last.

1. Start recorder on subordinate

>k4arecorder.exe --device 1 --external-sync subordinate --imu OFF -e -8 -r 5 -l 5 output-2.mkv

2. The device goes into waiting state

1. Start master device

>k4arecorder.exe --device 0 --external-sync master --imu OFF -e -8 -r 5 -l 5 output-1.mkv

2. Wait recording to finish

You can use the Azure Kinect viewer to play back recording.

Use manual exposure for recording synchronized cameras. RGB camera auto-exposure may impact time-
synchronization.
Restarting subordinate device will cause synchronization to be lost.
Some camera modes support 15 fps max. We recommended that you don't mix modes/frame rates between
devices
Connecting multiple units to single PC can easily saturate USB bandwidth, consider using separate host PC per
device. Pay attention to CPU/GPU compute as well.
Disable the microphone and IMU if they aren't needed to improve reliability.

For any issues see Troubleshooting

Set up external sync
Azure Kinect Recorder for recorder settings and additional information.
Azure Kinect Viewer for playing recordings or setting RGB camera properties not available through recorder.

https://support.microsoft.com/help/4494429/sync-multiple-devices

Azure Kinect Firmware Tool for updating device firmware.

Azure Kinect Viewer
11/12/2019 • 2 minutes to read • Edit Online

Use viewer

Start application

Use the viewer with live data

Use the viewer with recorded data

Check device firmware version

The Azure Kinect Viewer, found under the installed tools directory as k4aviewer.exe (for example,
C:\Program Files\Azure Kinect SDK vX.Y.Z\tools\k4aviewer.exe , where X.Y.Z is the installed version of the

SDK), can be used to visualize all device data streams to:

Verify sensors are working correctly.
Help positioning the device.
Experiment with camera settings.
Read device configuration.
Playback recordings made with Azure Kinect Recorder.

For more information about Azure Kinect viewer, watch How to use Azure Kinect video.

Azure Kinect Viewer is open source and can be used as an example for how to use the APIs.

The viewer can operate in two modes: with live data from the sensor or from recorded data (Azure Kinect
Recorder).

Launch the application by running k4aviewer.exe .

1. In the Open Device section, select the Serial Number of the device to open. Then, select Refresh, if the
device is missing.

2. Select the Open Device button.
3. Select Start to begin streaming data with the default settings.

In Open Recording section, navigate to the recorded file, and select it.

Access the device firmware version in the configuration window, as shown in the following image.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/azure-kinect-viewer.md
https://www.microsoft.com/videoplayer/embed/re3hnwg
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/tools/k4aviewer

Depth camera

For example, in this case, the depth camera ISP is running FW 1.5.63.

The depth camera viewer will show two windows:

One is called Active Brightness that is a grayscale image showing IR brightness.
The second is called Depth, which has a colorized representation of the depth data.

Hover your cursor, at the pixel in the depth window, to see the value of the depth sensor, as shown below.

RGB camera

Inertial Measurement Unit (IMU)

The image below shows the color camera view.

You can control RGB camera settings from the configuration window during the streaming.

The IMU window has two components, an accelerometer and a gyroscope.

The top half is the accelerometer and shows linear acceleration in meters/second . It includes acceleration from
gravity, so if it's lying flat on a table, the Z axis will probably show around -9.8 m/s .

2

2

The bottom half is the gyroscope portion and shows rotational movement in radians/second

Microphone input

Point cloud visualization

The microphone view shows a representation of the sound heard on each microphone. If there's no sound, the
graph is shown as empty, otherwise, you'll see a dark blue waveform with a light blue waveform overlaid on
top of it.

The dark wave represents the minimum and maximum values observed by the microphone over that time
slice. The light wave represents the root mean square of the values observed by the microphone over that time
slice.

Depth visualized in 3D lets you move in the image using instructed keys.

Synchronization control

Next steps

You can use the viewer to configure the device as standalone (default), master, or subordinate mode when
configuring multi-device synchronization. When changing configuration or inserting/removing
synchronization cable, select Refresh to update.

External synchronization setup guide

https://support.microsoft.com/help/4494429/sync-multiple-azure-kinect-dk-devices

Azure Kinect DK recorder
11/12/2019 • 2 minutes to read • Edit Online

NOTE

Recorder options

k4arecorder [options] output.mkv

 Options:
 -h, --help Prints this help
 --list List the currently connected K4A devices
 --device Specify the device index to use (default: 0)
 -l, --record-length Limit the recording to N seconds (default: infinite)
 -c, --color-mode Set the color sensor mode (default: 1080p), Available options:
 3072p, 2160p, 1536p, 1440p, 1080p, 720p, 720p_NV12, 720p_YUY2, OFF
 -d, --depth-mode Set the depth sensor mode (default: NFOV_UNBINNED), Available options:
 NFOV_2X2BINNED, NFOV_UNBINNED, WFOV_2X2BINNED, WFOV_UNBINNED, PASSIVE_IR, OFF
 --depth-delay Set the time offset between color and depth frames in microseconds (default: 0)
 A negative value means depth frames will arrive before color frames.
 The delay must be less than 1 frame period.
 -r, --rate Set the camera frame rate in Frames per Second
 Default is the maximum rate supported by the camera modes.
 Available options: 30, 15, 5
 --imu Set the IMU recording mode (ON, OFF, default: ON)
 --external-sync Set the external sync mode (Master, Subordinate, Standalone default: Standalone)
 --sync-delay Set the external sync delay off the master camera in microseconds (default: 0)
 This setting is only valid if the camera is in Subordinate mode.
 -e, --exposure-control Set manual exposure value (-11 to 1) for the RGB camera (default: auto exposure)

Record files

k4arecorder.exe output.mkv

k4arecorder.exe -d WFOV_UNBINNED -c 3072p -r 15 -l 10 --imu OFF output.mkv

This article covers how you can use the k4arecorder command-line utility to record data streams from the
sensor SDK to a file.

Azure Kinect recorder doesn't record audio.

The k4arecorder has various command-line arguments to specify the output file and recording modes.

Recordings are stored in the Matroska .mkv format. The recording uses multiple video tracks for color and depth,
and also additional information such as camera calibration and metadata.

Example 1. Record Depth NFOV unbinned (640x576) mode, RGB 1080p at 30 fps with IMU. Press the CTRL-C
keys to stop recording.

Example 2. Record WFOV non-binned (1MP), RGB 3072p at 15 fps without IMU, for 10 seconds.

Example 3. Record WFOV 2x2 binned at 30 fps for 5 seconds, and save to output.mkv.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/azure-kinect-recorder.md

k4arecorder.exe -d WFOV_2X2BINNED -c OFF --imu OFF -l 5 output.mkv

TIP

Verify recording

Next steps

You can use Azure Kinect Viewer to configure RGB camera controls before recording (e.g. to set manual white balance).

You can open the output .mkv file with Azure Kinect Viewer.

To extract tracks or view file info, tools such as mkvinfo are available as part of the MKVToolNix toolkit.

Using recorder with external synchronized units

https://mkvtoolnix.download/

Azure Kinect DK firmware tool
11/12/2019 • 2 minutes to read • Edit Online

List connected devices

 == Azure Kinect DK Firmware Tool ==
Found 2 connected devices:
0: Device "000036590812"
1: Device "000274185112"

Check device firmware version

 == Azure Kinect DK Firmware Tool ==
Device Serial Number: 000036590812
Current Firmware Versions:
 RGB camera firmware: 1.5.92
 Depth camera firmware: 1.5.66
 Depth config file: 6109.7
 Audio firmware: 1.5.14
 Build Config: Production
 Certificate Type: Microsoft

Update device firmware

Reset device

The Azure Kinect Firmware Tool can be used to query and update the device firmware of the Azure Kinect DK.

You can get a list of connected devices by using the -l option. AzureKinectFirmwareTool.exe -l

You can check the current firmware versions of the first attached device by using -q option, for example,
AzureKinectFirmwareTool.exe -q .

If there's more than one device attached, you can specify which device you want to query by adding the full serial
number to the command, such as:

AzureKinectFirmwareTool.exe -q 000036590812

The most common use of this tool is to update device firmware. Do the update by calling the tool using the -u

option. A firmware update can take few minutes, depending on which firmware files must be updated.

For step-by-step firmware update instruction, see Azure Kinect firmware update.

AzureKinectFirmwareTool.exe -u firmware\AzureKinectDK_Fw_1.5.926614.bin

If there's more than one device attached, you can specify which device you want to query by adding the full serial
number to the command.

AzureKinectFirmwareTool.exe -u firmware\AzureKinectDK_Fw_1.5.926614.bin 000036590812

An attached Azure Kinect DK can be reset using -r option, if you must get the device into a known state.

If there's more than one device attached, you can specify which device you want to query by adding the full serial

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/azure-kinect-firmware-tool.md

Inspect firmware

 == Azure Kinect DK Firmware Tool ==
Loading firmware package ..\tools\updater\firmware\AzureKinectDK_Fw_1.5.926614.bin.
File size: 1228844 bytes
This package contains:
 RGB camera firmware: 1.5.92
 Depth camera firmware: 1.5.66
 Depth config files: 6109.7 5006.27
 Audio firmware: 1.5.14
 Build Config: Production
 Certificate Type: Microsoft
 Signature Type: Microsoft

Firmware update tool options
 == Azure Kinect DK Firmware Tool ==
* Usage Info *
 AzureKinectFirmwareTool.exe <Command> <Arguments>

Commands:
 List Devices: -List, -l
 Query Device: -Query, -q
 Arguments: [Serial Number]
 Update Device: -Update, -u
 Arguments: <Firmware Package Path and FileName> [Serial Number]
 Reset Device: -Reset, -r
 Arguments: [Serial Number]
 Inspect Firmware: -Inspect, -i
 Arguments: <Firmware Package Path and FileName>

 If no Serial Number is provided, the tool will just connect to the first device.

Examples:
 AzureKinectFirmwareTool.exe -List
 AzureKinectFirmwareTool.exe -Update c:\data\firmware.bin 0123456

Next steps

number to the command.

AzureKinectFirmwareTool.exe -r 000036590812

Inspecting firmware allows you to get the version information from a firmware bin file before updating an actual
device.

AzureKinectFirmwareTool.exe -i firmware\AzureKinectDK_Fw_1.5.926614.bin

Step-by-step instructions to update device firmware

Azure Kinect Sensor SDK download
11/12/2019 • 2 minutes to read • Edit Online

Azure Kinect Sensor SDK contents

Windows download link

NOTE

Linux installation instructions

Change log and older versions

This page has the download links for each version of the Azure Kinect Sensor SDK. The installer provides all of
the needed files to develop for the Azure Kinect.

Headers and libraries to build an application using the Azure Kinect DK.
Redistributable DLLs needed by applications using the Azure Kinect DK.
The Azure Kinect Viewer.
The Azure Kinect Recorder.
The Azure Kinect Firmware Tool.

Microsoft installer | GitHub source code

When installing the SDK, remember the path you install to. For example, "C:\Program Files\Azure Kinect SDK 1.2". You will
find the tools referenced in articles in this path.

You can find previous versions of Azure Kinect Sensor SDK and Firmware on GitHub.

Currently, the only supported distribution is Ubuntu 18.04. To request support for other distributions, see this
page.

First, you'll need to configure Microsoft's Package Repository, following the instructions here.

Now, you can install the necessary packages. The k4a-tools package includes the Azure Kinect Viewer, the Azure
Kinect Recorder, and the Azure Kinect Firmware Tool. To install it, run

sudo apt install k4a-tools

The libk4a<major>.<minor>-dev package contains the headers and CMake files to build against libk4a . The
libk4a<major>.<minor> package contains the shared objects needed to run executables that depend on libk4a .

The basic tutorials require the libk4a<major>.<minor>-dev package. To install it, run

sudo apt install libk4a1.1-dev

If the command succeeds, the SDK is ready for use.

You can find the change log for the Azure Kinect Sensor SDK here.

If you need an older version of the Azure Kinect Sensor SDK, find it here.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/sensor-sdk-download.md
https://download.microsoft.com/download/e/6/6/e66482b2-b6c1-4e34-bfee-95294163fc40/azure kinect sdk 1.3.0.exe
https://github.com/microsoft/azure-kinect-sensor-sdk/issues/800
https://github.com/microsoft/azure-kinect-sensor-sdk/blob/develop/docs/usage.md
https://aka.ms/azurekinectfeedback
https://packages.microsoft.com/
https://docs.microsoft.com/windows-server/administration/linux-package-repository-for-microsoft-software
https://github.com/microsoft/azure-kinect-sensor-sdk/blob/develop/changelog.md
https://github.com/microsoft/azure-kinect-sensor-sdk/blob/develop/docs/usage.md

Next steps
Set up Azure Kinect DK

Download Azure Kinect Body Tracking SDK
1/24/2020 • 3 minutes to read • Edit Online

Azure Kinect Body Tracking SDK contents

Windows download links
VERSION DOWNLOAD

1.0.0 msi nuget

0.9.5 msi nuget

0.9.4 msi nuget

0.9.3 msi nuget

0.9.2 msi nuget

0.9.1 msi nuget

0.9.0 msi nuget

Linux installation instructions

This document provides links to install each version of the Azure Kinect Body Tracking SDK.

Headers and libraries to build a body tracking application using the Azure Kinect DK.
Redistributable DLLs needed by body tracking applications using the Azure Kinect DK.
Sample body tracking applications.

Currently, the only supported distribution is Ubuntu 18.04. To request support for other distributions, see this
page.

First, you'll need to configure Microsoft's Package Repository, following the instructions here.

The libk4abt<major>.<minor>-dev package contains the headers and CMake files to build against libk4abt . The
libk4abt<major>.<minor> package contains the shared objects needed to run executables that depend on libk4abt

as well as the example viewer.

The basic tutorials require the libk4abt<major>.<minor>-dev package. To install it, run

sudo apt install libk4abt1.0-dev

If the command succeeds, the SDK is ready for use.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/body-sdk-download.md
https://www.microsoft.com/en-us/download/details.aspx?id=100848
https://www.nuget.org/packages/microsoft.azure.kinect.bodytracking/1.0.0
https://www.microsoft.com/en-us/download/details.aspx?id=100636
https://www.nuget.org/packages/microsoft.azure.kinect.bodytracking/0.9.5
https://www.microsoft.com/en-us/download/details.aspx?id=100415
https://www.nuget.org/packages/microsoft.azure.kinect.bodytracking/0.9.4
https://www.microsoft.com/en-us/download/details.aspx?id=100307
https://www.nuget.org/packages/microsoft.azure.kinect.bodytracking/0.9.3
https://www.microsoft.com/en-us/download/details.aspx?id=100128
https://www.nuget.org/packages/microsoft.azure.kinect.bodytracking/0.9.2
https://www.microsoft.com/en-us/download/details.aspx?id=100063
https://www.nuget.org/packages/microsoft.azure.kinect.bodytracking/0.9.1
https://www.microsoft.com/en-us/download/details.aspx?id=58402
https://www.nuget.org/packages/microsoft.azure.kinect.bodytracking/0.9.0
https://aka.ms/azurekinectfeedback
https://packages.microsoft.com/
https://docs.microsoft.com/windows-server/administration/linux-package-repository-for-microsoft-software

NOTE

Change log
v1.0.0

v0.9.5

v0.9.4

v0.9.3

v0.9.2

When installing the SDK, remember the path you install to. For example, "C:\Program Files\Azure Kinect Body Tracking SDK
1.0.0". You will find the samples referenced in articles in this path. Body tracking samples are located in the body-tracking-
samples folder in the Azure-Kinect-Samples repository. You will find the samples referenced in articles here.

[Feature] Add C# wrapper to the msi installer.
[Bug Fix] Fix issue that the head rotation cannot be detected correctly: Link
[Bug Fix] Fix issue that the CPU usage goes up to 100% on Linux machine: Link
[Samples] Add two samples to the sample repo. Sample 1 demonstrates how to transform body tracking
results from the depth space to color space Link; sample 2 demonstrates how to detect floor plane Link

[Feature] C# support. C# wrapper is packed in the nuget package.
[Feature] Multi-tracker support. Creating multiple trackers is allowed. Now user can create multiple trackers to
track bodies from different Azure Kinect devices.
[Feature] Multi-thread processing support for CPU mode. When running on CPU mode, all cores will be used
to maximize the speed.
[Feature] Add gpu_device_id to k4abt_tracker_configuration_t struct. Allow users to specify GPU device that is
other than the default one to run the body tracking algorithm.
[Bug Fix/Breaking Change] Fix typo in a joint name. Change joint name from K4ABT_JOINT_SPINE_NAVAL to
K4ABT_JOINT_SPINE_NAVEL .

[Feature] Add hand joints support. The SDK will provide information for three additional joints for each hand:
HAND, HANDTIP, THUMB.
[Feature] Add prediction confidence level for each detected joints.
[Feature] Add CPU mode support. By changing the cpu_only_mode value in k4abt_tracker_configuration_t ,
now the SDK can run on CPU mode which doesn't require the user to have a powerful graphics card.

[Feature] Publish a new DNN model dnn_model_2_0.onnx, which largely improves the robustness of the body
tracking.
[Feature] Disable the temporal smoothing by default. The tracked joints will be more responsive.
[Feature] Improve the accuracy of the body index map.
[Bug Fix] Fix bug that the sensor orientation setting is not effective.
[Bug Fix] Change the body_index_map type from K4A_IMAGE_FORMAT_CUSTOM to
K4A_IMAGE_FORMAT_CUSTOM8.
[Known Issue] Two close bodies may merge to single instance segment.

[Breaking Change] Update to depend on the latest Azure Kinect Sensor SDK 1.2.0.
[API Change] k4abt_tracker_create function will start to take a k4abt_tracker_configuration_t input.
[API Change] Change k4abt_frame_get_timestamp_usec API to k4abt_frame_get_device_timestamp_usec to be
more specific and consistent with the Sensor SDK 1.2.0.
[Feature] Allow users to specify the sensor mounting orientation when creating the tracker to achieve more
accurate body tracking results when mounting at different angles.

https://github.com/microsoft/azure-kinect-samples/tree/master/body-tracking-samples
https://github.com/microsoft/azure-kinect-sensor-sdk/issues/997
https://github.com/microsoft/azure-kinect-sensor-sdk/issues/1007
https://github.com/microsoft/azure-kinect-samples/tree/master/body-tracking-samples/camera_space_transform_sample
https://github.com/microsoft/azure-kinect-samples/tree/master/body-tracking-samples/floor_detector_sample

v0.9.1

v0.9.0

Next steps

[Feature] Provide new API k4abt_tracker_set_temporal_smoothing to change the amount of temporal smoothing
that the user wants to apply.
[Feature] Add C++ wrapper k4abt.hpp.
[Feature] Add version definition header k4abtversion.h.
[Bug Fix] Fix bug that caused extremely high CPU usage.
[Bug Fix] Fix logger crashing bug.

[Bug Fix] Fix memory leak when destroying tracker
[Bug Fix] Better error messages for missing dependencies
[Bug Fix] Fail without crashing when creating a second tracker instance
[Bug Fix] Logger environmental variables now work correctly
Linux support

[Breaking Change] Downgraded the SDK dependency to CUDA 10.0 (from CUDA 10.1). ONNX runtime
officially only supports up to CUDA 10.0.
[Breaking Change] Switched to ONNX runtime instead of Tensorflow runtime. Reduces the first frame
launching time and memory usage. It also reduces the SDK binary size.
[API Change] Renamed k4abt_tracker_queue_capture() to k4abt_tracker_enqueue_capture()

[API Change] Broke k4abt_frame_get_body() into two separate functions: k4abt_frame_get_body_skeleton() and
k4abt_frame_get_body_id() . Now you can query the body ID without always copying the whole skeleton

structure.
[API Change] Added k4abt_frame_get_timestamp_usec() function to simplify the steps for the users to query
body frame timestamp.
Further improved the body tracking algorithm accuracy and tracking reliability

Azure Kinect DK overview

Set up Azure Kinect DK

Set up Azure Kinect body tracking

Azure Kinect sensor SDK system requirements
11/12/2019 • 2 minutes to read • Edit Online

Supported operating systems and architectures

Development environment requirements

Minimum host PC hardware requirements

Body tracking host PC hardware requirements

USB3

This document provides details about the system requirements needed to install the sensor SDK and successfully
deploy your Azure Kinect DK.

Windows 10 April 2018 release (x64) or later
Linux Ubuntu 18.04 (x64) with OpenGLv4.4 or later GPU driver

The Sensor SDK is available for the Windows API (Win32) for native C/C++ Windows applications. The SDK isn't
currently available to UWP applications. Azure Kinect DK isn't supported for Windows 10 in S mode.

To contribute to sensor SDK development, visit GitHub.

The PC host hardware requirement is dependent on application/algorithm/sensor frame rate/resolution executed
on host PC. Recommended minimum Sensor SDK configuration for Windows is:

Seventh Gen Intel® CoreTM i3 Processor (Dual Core 2.4 GHz with HD620 GPU or faster)
4 GB Memory
Dedicated USB3 port
Graphics driver support for OpenGL 4.4 or DirectX 11.0

Lower end or older CPUs may also work depending on your use-case.

Performance differs also between Windows/Linux operating systems and graphics drivers in use.

The body tracking PC host requirement is more stringent than the general PC host requirement. Recommended
minimum Body Tracking SDK configuration for Windows is:

Seventh Gen Intel® CoreTM i5 Processor (Quad Core 2.4 GHz or faster)
4 GB Memory
NVIDIA GEFORCE GTX 1070 or better
Dedicated USB3 port

The recommended minimum configuration assumes K4A_DEPTH_MODE_NFOV_UNBINNED depth mode at
30fps tracking 5 people. Lower end or older CPUs and NVIDIA GPUs may also work depending on your use-case.

There are known compatibility issues with USB Host controllers. You can find more information on
Troubleshooting page

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/system-requirements.md
https://github.com/microsoft/azure-kinect-sensor-sdk

Next steps
Azure Kinect DK overview

Set up Azure Kinect DK

Set up Azure Kinect body tracking

Azure Kinect DK hardware specifications
2/16/2020 • 7 minutes to read • Edit Online

Terms

Product dimensions and weight

This article provides details about how Azure Kinect hardware integrates Microsoft's latest sensor technology
into a single, USB-connected accessory.

These abbreviated terms are used throughout this article.

NFOV (Narrow field-of-view depth mode)
WFOV (Wide field-of-view depth mode)
FOV (Field-of-view)
FPS (Frames-per-second)
IMU (Inertial Measurement Unit)
FoI (Field of Interest)

The Azure Kinect device consists of the following size and weight dimensions.

Dimensions: 103 x 39 x 126 mm
Weight: 440 g

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/hardware-specification.md

Operating environment

NOTE

Depth camera supported operating modes

Azure Kinect DK is intended for developers and commercial businesses operating under the following ambient
conditions:

Temperature: 10-25⁰C
Humidity: 8-90% (non-condensing) Relative Humidity

Use outside of the ambient conditions could cause the device to fail and/or function incorrectly. These ambient conditions
are applicable for the environment immediately around the device under all operational conditions. When used with an
external enclosure, active temperature control and/or other cooling solutions are recommended to ensure the device is
maintained within these ranges. The device design features a cooling channel in between the front section and rear sleeve.
When you implement the device, make sure this cooling channel is not obstructed.

Refer to additional product safety information.

Azure Kinect DK integrates a Microsoft designed 1-Megapixel Time-of-Flight (ToF) depth camera using the
image sensor presented at ISSCC 2018. The depth camera supports the modes indicated below:

https://support.microsoft.com/help/4023454/safety-information
https://docs.microsoft.com/windows/mixed-reality/isscc-2018

MODE RESOLUTION FOI FPS
OPERATING
RANGE* EXPOSURE TIME

NFOV unbinned 640x576 75°x65° 0, 5, 15, 30 0.5 - 3.86 m 12.8 ms

NFOV 2x2
binned (SW)

320x288 75°x65° 0, 5, 15, 30 0.5 - 5.46 m 12.8 ms

WFOV 2x2
binned

512x512 120°x120° 0, 5, 15, 30 0.25 - 2.88 m 12.8 ms

WFOV unbinned 1024x1024 120°x120° 0, 5, 15 0.25 - 2.21 m 20.3 ms

Passive IR 1024x1024 N/A 0, 5, 15, 30 N/A 1.6 ms

Color camera supported operating modes

RGB CAMERA
RESOLUTION (HXV) ASPECT RATIO FORMAT OPTIONS FRAME RATES (FPS)

NOMINAL FOV (HXV)
(POST-PROCESSED)

3840x2160 16:9 MJPEG 0, 5, 15, 30 90°x59°

2560x1440 16:9 MJPEG 0, 5, 15, 30 90°x59°

1920x1080 16:9 MJPEG 0, 5, 15, 30 90°x59°

1280x720 16:9 MJPEG/YUY2/NV12 0, 5, 15, 30 90°x59°

4096x3072 4:3 MJPEG 0, 5, 15 90°x74.3°

2048x1536 4:3 MJPEG 0, 5, 15, 30 90°x74.3°

NOTE

RGB camera exposure time values

*15% to 95% reflectivity at 850nm, 2.2 μW/cm /nm, random error std. dev. ≤ 17 mm, typical systematic error <
11 mm + 0.1% of distance without multi-path interference. Depth provided outside of indicated range depending
on object reflectivity.

2

Azure Kinect DK includes an OV12A10 12MP CMOS sensor rolling shutter sensor. The native operating modes
are listed below:

The RGB camera is USB Video class-compatible and can be used without the Sensor SDK. The RGB camera
color space: BT.601 full range [0..255].

The Sensor SDK can provide color images in the BGRA pixel format. This is not a native mode supported by the device and
causes additional CPU load when used. The host CPU is used to convert from MJPEG images received from the device.

Below is the mapping for the acceptable RGB camera manual exposure values:

EXP 2^EXP 50HZ 60HZ

-11 488 500 500

-10 977 1250 1250

-9 1953 2500 2500

-8 3906 10000 8330

-7 7813 20000 16670

-6 15625 30000 33330

-5 31250 40000 41670

-4 62500 50000 50000

-3 125000 60000 66670

-2 250000 80000 83330

-1 500000 100000 100000

0 1000000 120000 116670

1 2000000 130000 133330

Depth sensor raw timing

DEPTH MODE
IR
PULSES

PULSE
WIDTH

IDLE
PERIODS IDLE TIME

EXPOSURE
TIME

NFOV Unbinned
NFOV 2xx
Binned
WFOV 2x2
Binned

9 125 us 8 1450 us 12.8 ms

WFOV Unbinned 9 125 us 8 2390 us 20.3 ms

Camera field of view
The next image shows the depth and RGB camera field-of-view, or the angles that the sensors "see". This diagram
shows the RGB camera in a 4:3 mode.

NOTE

Motion sensor (IMU)

Microphone array

This image demonstrates the camera's field-of-view as seen from the front at a distance of 2000 mm.

When depth is in NFOV mode, the RGB camera has better pixel overlap in 4:3 than 16:9 resolutions.

The embedded Inertial Measurement Unit (IMU) is an LSM6DSMUS and includes both an accelerometer and a
gyroscope. The accelerometer and gyroscope are simultaneously sampled at 1.6 kHz. The samples are reported
to the host at a 208 Hz.

Azure Kinect DK embeds a high-quality, seven microphone circular array that identifies as a standard USB audio
class 2.0 device. All 7 channels can be accessed. The performance specifications are:

Sensitivity: -22 dBFS (94 dB SPL, 1 kHz)
Signal to noise ratio > 65 dB
Acoustic overload point: 116 dB

USB

USB INTERFACE PNP IP NOTES

USB3.1 Gen1 Hub 0x097A The main hub

USB2.0 Hub 0x097B HS USB

Depth camera 0x097C USB3.0

Color camera 0x097D USB3.0

Microphones 0x097E HS USB

Indicators

WHEN THE LIGHT IS IT MEANS

Solid white Device is on and working properly.

Flashing white Device is on but doesn’t have a USB 3.0 data connection.

Flashing amber Device doesn't have enough power to operate.

Amber flashing white Firmware update or recovery in progress

Azure Kinect DK is a USB3 composite device that exposes the following hardware endpoints to the operating
system:

Vendor ID is 0x045E (Microsoft), Product ID table below:

The device has a camera streaming indicator on the front of the device that can be disabled programmatically
using the Sensor SDK.

The status LED behind the device indicates device state:

Power device

NOTE

TIP

What does the light mean?

The device can be powered in two ways:

1. Using the in-box power supply. Data is connected by a separate USB Type-C to Type-A cable.
2. Using a Type-C to Type-C cable for both power and data.

A Type-C to Type-C cable isn't included with the Azure Kinect DK.

The in-box power supply cable is a USB Type-A to single post barrel connector. Use the provided wall-power supply with
this cable. The device is capable of drawing more power than two standard USB Type-A ports can provide.
USB cables do matter and we recommended to use high-quality cables and verify functionality before deploying the
unit remotely.

To select a good Type-C to Type-C cable:

The USB certified cable must support both power and data.
A passive cable should be less than 1.5m in length. If longer, use an active cable.
The cable needs to support no less than >1.5A. Otherwise you need to connect an external power supply.

Verify cable:

Connect device via the cable to the host PC.

Validate that all devices enumerate correctly in Windows device manager. Depth and RGB camera should
appear as shown in the example below.

Validate that cable can stream reliably on all sensors in the Azure Kinect Viewer, with the following
settings:

Depth camera: NFOV unbinned
RGB Camera: 2160p
Microphones and IMU enabled

The power indicator is an LED on the back of your Azure Kinect DK. The color of the LED changes depending on
the status of your device.

https://www.usb.org/products

WHEN THE LIGHT IS: IT MEANS THAT: AND YOU SHOULD:

Solid white The device is powered on and working
correctly.

Use the device.

Not lit The device is not connected to the PC. Make sure that the round power
connector cable is connected to the
device and to the USB power adapter.

Make sure that the USB-C cable is
connected to the device and to your
PC.

Flashing white The device is powered on but doesn't
have a USB 3.0 data connection.

Make sure that the round power
connector cable is connected to the
device and to the USB power adapter.

Make sure that the USB-C cable is
connected to the device and to a USB
3.0 port on your PC.

Connect the device to a different USB
3.0 port on the PC.

On your PC, open Device Manager
(Start > Control Panel > Device
Manager), and verify that your PC has
a supported USB 3.0 host controller.

This figure labels the following components:

1. Power indicator
2. Power cable (connected to the power source)
3. USB-C data cable (connected to the PC)

Make sure that the cables are connected as shown. Then check the following table to learn what the various
states of the power light indicate.

Flashing amber The device doesn't have enough power
to operate.

Make sure that the round power
connector cable is connected to the
device and to the USB power adapter.

Make sure that the USB-C cable is
connected to the device and to your
PC.

Amber, then flashing white The device is powered on and is
receiving a firmware update, or the
device is restoring the factory settings.

Wait for the power indicator light to
become solid white. For more
information, see Reset Azure Kinect DK.

WHEN THE LIGHT IS: IT MEANS THAT: AND YOU SHOULD:

Power consumption

Calibration

Device recovery

Next steps

Azure Kinect DK consumes up to 5.9 W; specific power consumption is use-case dependent.

Azure Kinect DK is calibrated at the factory. The calibration parameters for visual and inertial sensors may be
queried programmatically through the Sensor SDK.

Device firmware can be reset to original firmware using button underneath the lock pin.

To recover the device, see instructions here.

Use Azure Kinect Sensor SDK
Set up hardware

Synchronization across multiple Azure Kinect DK
devices
1/19/2020 • 6 minutes to read • Edit Online

Why to use multiple Azure Kinect DK devices?

Solve for occlusion

In this article, we will explore the benefits of multi device synchronization and its details.

Before you start, make sure to review Azure Kinect DK Hardware specification and the the multi-camera hardware
set up.

There are a few important things to consider before starting your multi-camera setup.

We recommend using a manual exposure setting if you want to control the precise timing of each device.
Automatic exposure allows each color camera to dynamically change exposure, as a result it is impossible for
the timing between the two devices to stay exactly the same.
The device timestamp reported for images changes meaning to ‘Start of Frame’ from ‘Center of Frame’ when
using master or subordinate modes.
Avoid IR camera interference between different cameras. Use depth_delay_off_color_usec or
subordinate_delay_off_master_usec to ensure each IR laser fires in its own 160us window or has a different field

of view.
Do ensure you are using the most recent firmware version.
Do not repeatedly set the same exposure setting in the image capture loop.
Do set the exposure when needed, just call the API once.

There are many reasons to use multiple Azure Kinect DK devices. Some examples are

Fill in occlusions
3D object scanning
Increase the effective frame rate to something larger than the 30 FPS
Multiple 4K color images capture of the same scene, all aligned at the start of exposure within 100 us
Increase camera coverage within the space

Occlusion means that there is something you want to see, but can't see it due to some interference. In our case
Azure Kinect DK device has two cameras (depth and color cameras) that do not share the same origin, so one
camera can see part of an object that other cannot. Therefore, when transforming depth to color image, you may
see a shadow around an object. On the image below, the left camera sees the grey pixel P2, but the ray from the
right camera to P2 hits the white foreground object. As a result the right camera cannot see P2.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/multi-camera-sync.md
https://support.microsoft.com/help/4494429

Set up multiple Azure Kinect DK devices

Synchronization cables

NOTE

Cross-device calibration

USB Memory on Ubuntu

Using additional Azure Kinect DK devices will solve this issue and fill out an occlusion problem.

Make sure to review the multi-camera hardware setup article that describes different options for hardware setup.

Azure Kinect DK includes 3.5-mm synchronization ports that can be used to link multiple units together. When
linked, cameras can coordinate the timing of Depth and RGB camera triggering. There are specific sync-in and
sync-out ports on the device, enabling easy daisy chaining. A compatible cable isn't included in box and must be
purchased separately.

Cable requirements:

3.5-mm male-to-male cable ("3.5-mm audio cable")
Maximum cable length should be less than 10 meters
Both stereo and mono cable types are supported

When using multiple depth cameras in synchronized captures, depth camera captures should be offset from one
another by 160μs or more to avoid depth cameras interference.

Make sure to remove the cover in order to reveal the sync ports.

In a single device depth and RGB cameras factory calibrated. However, when multiple devices are used, new
calibration requirements need to be considered to determine how to transform an image from the domain of the
camera it was captured in, to the domain of the camera you want to process images in. There are multiple options
for cross-calibrating devices, but in the GitHub green screen code sample we are using OpenCV methods There
are multiple options for cross-calibrating devices, but in the GitHub green screen code sample we are using
OpenCV method.

If you are setting up multi-camera synchronization on Linux, by default the USB controller is only allocated 16 MB
of kernel memory for handling of USB transfers. It is typically enough to support a single Azure Kinect DK,
however more memory is needed to support multiple devices. To increase the memory, follow the below steps:

Edit /etc/default/grub
Replace the line that says GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" with
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash usbcore.usbfs_memory_mb=32". In this example, we set
the USB memory to 32 MB twice that of the default, however to can be set much larger. Choose a value that is

https://support.microsoft.com/help/4494429
https://github.com/microsoft/azure-kinect-sensor-sdk/tree/develop/examples/green_screen

Verify two Azure Kinect DKs' synchronization

NOTE

right for your solution.
Run sudo update-grub
Restart the computer

After setting up the hardware and connecting the sync out port of the master to sync in of the subordinate, we can
use the Azure Kinect Viewer to validate the devices setup. It also can be done for more than two devices.

The Subordinate device is the one that connected to "Sync In" pin. The master is the one connected "Synch Out".

1. Get the serial number for each device.

2. Open two instances of Azure Kinect Viewer

3. Open subordinate Azure Kinect DK device first. Navigate to Azure Kinect viewer, and in the Open Device
section choose subordinate device:

4. In the section "External Sync", choose option "Sub" and start the device. Images will not be sent to the
subordinate after hitting start due to the device waiting for the sync pulse from the master device.

NOTE

Avoiding interference from other depth cameras

5. Navigate to another instance of the Azure Kinect viewer and open the master Azure Kinect DK device.

6. In the section "External Sync", choose option "Master" and start the device.

The master device must always be started last the get precise image capture alignment between all devices.

When the master Azure Kinect Device is started, the synchronized image from both of the Azure Kinect devices
should appear.

Interference happens when the depth sensor's ToF lasers are on at the same time as another depth camera. To
avoid it, cameras that have overlapping areas of interest need to have their timing shifted by the "laser on time" so
they are not on at the same time. For each capture, the laser turns on nine times and is active for only 125us and is
then idle for 1450us or 2390us depending on the mode of operation. As a result, depth cameras need their "laser
on time" shifted by a minimum of 125us and that on time needs to fall into the idle time of the other depth sensors
in use.

Due to the differences in the clock used by the firmware and the clock used by the camera, 125us cannot be used
directly. Instead the software setting required to ensure sure there is no camera interference is 160us. It allows nine
more depth cameras to be scheduled into the 1450us of idle time of NFOV. The exact timing changes based on the
depth mode you are using.

Using the depth sensor raw timing table the exposure time can be calculated as:

NOTE

Triggering with custom source

Next steps

Exposure Time = (IR Pulses * Pulse Width) + (Idle Periods * Idle Time)

A custom sync source can be used to replace the master Azure Kinect DK. It is helpful when the image captures
need to be synchronized with other equipment. The custom trigger must create a sync signal, similar to the master
device, via the 3.5-mm port.

The SYNC signals are active high and pulse width should be greater than 8us.
Frequency support must be precisely 30 fps, 15 fps, and 5 fps, the frequency of color camera's master VSYNC
signal.
SYNC signal from the board should be 5 V TTL/CMOS with maximum driving capacity no less than 8 mA.
All styles of 3.5-mm port can be used with Kinect DK, including "mono", that is not pictured. All sleeves and
rings are shorted together inside Kinect DK and they are connected to ground of the master Azure Kinect DK.
The tip is the sync signal.

Use Azure Kinect Sensor SDK
Capture Azure Kinect device synchronization
Set up hardware

Azure Kinect and Kinect Windows v2 comparison
6/26/2019 • 2 minutes to read • Edit Online

Hardware

AZURE KINECT DK KINECT FOR WINDOWS V2

Audio Details 7-mic circular array 4-mic linear phased array

Motion sensor Details 3-axis accelerometer 3-axis
gyro

3-axis accelerometer

RGB Camera Details 3840 x 2160 px @30 fps 1920 x 1080 px @30 fps

Depth Camera Method Time-of-Flight Time-of-Flight

Resolution 640 x 576 px @30 fps 512 x 424 px @ 30 fps

512 x 512 px @30 fps

1024x1024 px @15 fps

Connectivity Data USB3.1 Gen 1 with type
USB-C

USB 3.1 gen 1

Power External PSU or USB-C External PSU

Synchronization RGB & Depth internal,
external device-to-device

RGB & Depth internal only

Mechanical Dimensions 103 x 39 x 126 mm 249 x 66 x 67 mm

Mass 440 g 970 g

Mounting One ¼-20 UNC. Four
internal screw points

One ¼-20 UNC

Sensor access

The Azure Kinect DK hardware and Software Development Kits have differences from Kinect for Windows v2. Any
existing Kinect for Windows v2 applications will not work directly with Azure Kinect DK and will require porting to
the new SDK.

High-level differences between the Azure Kinect development kit and Kinect for Windows v2 are listed in the
following table.

Find additional details in the Azure Kinect DK hardware document.

The following table provides low-level device sensor access capability comparison.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/windows-comparison.md

FUNCTIONALITY AZURE KINECT KINECT FOR WINDOWS NOTES

Depth ✔� ✔�

IR ✔� ✔�

Color ✔� ✔� Color format supports
differences, Azure
Kinect DK supports
these camera controls:
Exposure, white
balance, brightness,
contrast, saturation,
sharpness, and gain
control

Audio ✔� ✔� Azure Kinect DK mics
are accessed via
Speech SDK or
Windows native API

IMU ✔� Azure Kinect DK has a
full 6-axis IMU and
Kinect for Windows
only provides 1-axis

Calibration data ✔� ✔� OpenCV compatible
camera model
calibration

Depth-RGB internal
sync

✔� ✔�

External Sync ✔� Azure Kinect DK
allows programmable
delay for external sync

Share access with
multiple clients

✔� The Azure Kinect
Sensor SDK relies on
WinUSB/libUSB to
access device and
does not have a
service implemented
to enable sharing
device access with
multiple processes

Stream record /
playback tool

✔� ✔� Azure Kinect DK uses
an open-source
Matroska container-
based implementation

Features
The Azure Kinect SDK feature set is different from Kinect for Windows v2, as detailed below:

KINECT V2 FEATURE KINECT V2 DATA TYPE AZURE KINECT SDK/SERVICE

Sensor Data Access DepthFrame Sensor SDK - Retrieve images

InfraredFrame Sensor SDK - Retrieve images

ColorFrame Sensor SDK - Retrieve images

AudioBeamFrame Not currently supported

Body Tracking BodyFrame Body Tracking SDK

BodyIndexFrame Body Tracking SDK

Coordinate Mapping CoordinateMapper Sensor SDK - Image transformations

Face Tracking FaceFrame Cognitive Services: Face

Speech Recognition N/A Cognitive Services: Speech

Next steps
Kinect for Windows developer pages

https://azure.microsoft.com/services/cognitive-services/face/
https://azure.microsoft.com/services/cognitive-services/directory/speech/
https://developer.microsoft.com/windows/kinect

Reset Azure Kinect DK
2/13/2020 • 2 minutes to read • Edit Online

Related topics

You may encounter a situation in which you have to reset your Azure Kinect DK back to its factory image (for
example, if a firmware update didn't install correctly).

1. Power off your Azure Kinect DK. To do this, remove the USB cable and power cable.

2. To find the reset button, remove the screw that's located in the tripod mount lock.

3. Reconnect the power cable.

4. Insert the tip of a straightened paperclip into the empty screw hole, in the tripod mount lock.

5. Use the paperclip to gently press and hold the reset button.

6. While you hold the reset button, reconnect the USB cable.

7. After about 3 seconds, the power indicator light changes to amber. After the light changes, release the reset
button.

After you release the reset button, the power indicator light blinks white and amber while the device resets.

8. Wait for the power indicator light to become solid white.

9. Replace the screw in the tripod mount lock, over the reset button.

10. Use Azure Kinect Viewer to verify that the firmware was reset. To do this, launch the Azure Kinect Viewer,
and then select Device firmware version info to see the firmware version that is installed on your Azure
Kinect DK.

Always make sure that you have the latest firmware installed on the device. To get the latest firmware version, use
the Azure Kinect Firmware Tool. For more information about how to check your firmware status, see Check device
firmware version.

About Azure Kinect DK
Set up Azure Kinect DK
Azure Kinect DK hardware specifications: Operating environment
Azure Kinect Firmware Tool

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/reset-azure-kinect-dk.md

Azure Kinect Viewer
Synchronization across multiple Azure Kinect DK devices

Azure Kinect support options and resources
11/12/2019 • 2 minutes to read • Edit Online

Community support

Assisted support

Development Azure Kinect on Azure

Azure Kinect on-premises or other cloud services

Azure Kinect DK device

Next steps

This article will walk you through various support options.

There are multiple ways to get your questions answered through public forums:

StackOverflow, where you can ask questions or search through existing library of questions.
GitHub, where you can ask questions, open new bugs or contribute to development of Azure Kinect sensor
SDK.
Provide feedback, where you can share your ideas for the future of the product and vote for an existing idea.

There are multiple ways to get an assisted support for Azure Kinect.

Azure subscribers can create and manage support requests in the Azure portal. One-on-one development support
for Body Tracking, Sensor SDK, Speech device SDK, or Azure Cognitive Services is available for Azure subscribers
with an Azure Support Plan associated with their subscription.

Have an Azure Support Plan associated with your Azure subscription?Sign in to Azure portal to submit an
incident.
Need an Azure Subscription? Azure subscription options will provide more information about different options.
Need a Support plan? Select support plan

For technical support using Sensor SDK and Body Tracking SDK on-premises, open a ticket for professional
support on Microsoft support portal .

Before contacting hardware support, make sure that you have set up and updated Azure Kinect DK. To test if the
device is working, use the Azure Kinect viewer. Find out more on our Azure Kinect DK help page. You may also
want to check out our known issues and troubleshooting.

Get help with a device or sensor functionality, firmware updates, or purchasing options.

For more information on support offerings, learn more at Microsoft support for business.

Azure Kinect troubleshooting

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/support.md
https://stackoverflow.com/search?q=azurekinect&s=3b855ed0-8564-4961-856f-9614aeab4c0d&s=fd9ea920-622c-4d8e-b908-ec996e1f1403
https://github.com/microsoft/azure-kinect-sensor-sdk
https://feedback.azure.com/forums/920053-azure-kinect-dk
https://azure.microsoft.com/support/plans/
https://azure.microsoft.com/support/plans/
https://ms.portal.azure.com/
https://azure.microsoft.com/pricing/purchase-options/
https://azure.microsoft.com/support/plans/
https://support.microsoft.com/supportforbusiness/productselection?sapid=c49ea5bb-2b09-8612-be35-d55159732667
https://aka.ms/kinectsupport
https://support.microsoft.com/supportforbusiness/productselection?sapid=f77b1b95-721e-43a0-2db8-b01e81a3f813
https://support.microsoft.com/help/4341255/support-for-business

Azure Kinect known issues and troubleshooting
1/23/2020 • 7 minutes to read • Edit Online

Known issues

Collecting logs

/**
* environment variables
* K4A_ENABLE_LOG_TO_A_FILE =
* 0 - completely disable logging to a file
* log\custom.log - log all messages to the path and file specified - must end in '.log' to
* be considered a valid entry
* ** When enabled this takes precedence over the value of K4A_ENABLE_LOG_TO_STDOUT
*
* K4A_ENABLE_LOG_TO_STDOUT =
* 0 - disable logging to stdout
* all else - log all messages to stdout
*
* K4A_LOG_LEVEL =
* 'c' - log all messages of level 'critical' criticality
* 'e' - log all messages of level 'error' or higher criticality
* 'w' - log all messages of level 'warning' or higher criticality
* 'i' - log all messages of level 'info' or higher criticality
* 't' - log all messages of level 'trace' or higher criticality
* DEFAULT - log all message of level 'error' or higher criticality
*/

This page contains known issues and troubleshooting tips when using Sensor SDK with Azure Kinect DK. See also
product support pages for product hardware- specific issues.

Compatibility issues with ASMedia USB host controllers (for example, ASM1142 chipset)
Some cases using Microsoft USB driver can unblock
Many PCs have also alternative host controllers and changing the USB3 port may help

For more Sensor SDK-related issues, check GitHub Issues

Logging for K4A.dll is enabled through environment variables. By default logging is sent to stdout and only errors
and critical messages are generated. These settings can be altered so that logging goes to a file. The verbosity can
also be adjusted as needed. Below is an example, for Windows, of enabling logging to a file, named k4a.log, and
will capture warning and higher-level messages.

1. set K4A_ENABLE_LOG_TO_A_FILE=k4a.log

2. set K4A_LOG_LEVEL=w

3. Run scenario from command prompt (for example, launch viewer)
4. Navigate to k4a.log and share file.

For more information, see below clip from header file:

Logging for the Body Tracking SDK K4ABT.dll is similar except that users should modify a different set of
environment variable names:

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/troubleshooting.md
https://aka.ms/kinectsupport
https://github.com/microsoft/azure-kinect-sensor-sdk/issues

/**
* environment variables
* K4ABT_ENABLE_LOG_TO_A_FILE =
* 0 - completely disable logging to a file
* log\custom.log - log all messages to the path and file specified - must end in '.log' to
* be considered a valid entry
* ** When enabled this takes precedence over the value of K4A_ENABLE_LOG_TO_STDOUT
*
* K4ABT_ENABLE_LOG_TO_STDOUT =
* 0 - disable logging to stdout
* all else - log all messages to stdout
*
* K4ABT_LOG_LEVEL =
* 'c' - log all messages of level 'critical' criticality
* 'e' - log all messages of level 'error' or higher criticality
* 'w' - log all messages of level 'warning' or higher criticality
* 'i' - log all messages of level 'info' or higher criticality
* 't' - log all messages of level 'trace' or higher criticality
* DEFAULT - log all message of level 'error' or higher criticality
*/

Device doesn't enumerate in device manager

Azure Kinect Viewer fails to open

Check the status LED behind the device, if it's blinking amber you have USB connectivity issue and it doesn't
get enough power. The power supply cable should be plugged into the provided power adapter. While the
power cable has a USB type A connected, the device requires more power than a PC USB port can supply. So,
don't connect to it to a PC port or USB hub.
Check that you have power cable connected and using USB3 port for data.
Try changing USB3 port for the data connection (recommendation to use USB port close to motherboard, for
example, in back of the PC).
Check your cable, damaged or lower quality cables may cause unreliable enumeration (device keeps "blinking"
in device manager).
If you have connected to laptop and running on battery, it may be throttling the power to the port.
Reboot host PC.
If problem persists, there may be compatibility issue.
If failure happened during firmware update and device has not recovered by itself, perform factory reset.

Check first that your device enumerates in Windows Device Manager.

Check if you have any other application using the device (for example, Windows camera application). Only
one application at a time can access the device.

Check k4aviewer.err log for error messages.

Open Windows camera application and check of that works.

Power cycle device, wait streaming LED to power off before using the device.

Reboot host PC.

Make sure you are using latest graphics drivers on your PC.

If you are using your own build of SDK, try using officially released version if that fixes the issue.

https://support.microsoft.com/help/4494277/reset-azure-kinect-dk

Cannot find microphone

Device Firmware update issues

Image quality issues

Inconsistent or unexpected device timestamps

USB3 host controller compatibility

If problem persists, collect logs and file feedback.

Check first that microphone array is enumerated in Device Manager.

If a device is enumerated and works otherwise correctly in Windows, the issue may be that after firmware
update Windows has assigned different container ID to Depth Camera.

You can try to reset it by going to Device Manager, right-clicking on "Azure Kinect Microphone Array", and
select "Uninstall device". Once that is complete, detach and reattach the sensor.

After that restart Azure Kinect Viewer and try again.

If correct version number is not reported after update, you may need to power cycle the device.
If firmware update is interrupted, it may get into bad state and fail to enumerate. Detach and reattach the
device and wait 60 seconds to see if it can recover. If not then perform a factory reset

Start Azure Kinect viewer and check positioning of the device for interference or if sensor is blocked or lens is
dirty.
Try different operating modes to narrow down if issue is happening in specific mode.
For sharing image quality issues with the team you can:

1. Take pause view on Azure Kinect viewer and take a screenshot or
2. Take recording using Azure Kinect recorder, for example, k4arecorder.exe -l 5 -r 5 output.mkv

Calling k4a_device_set_color_control can temporarily induce timing changes to the device that may take a few
captures to stabilize. Avoid calling the API in the image capture loop to avoid resetting the internal timing
calculation with each new image. Instead call the API before the starting the camera or just when needing to
change the value within the image capture loop. In particular avoid calling
k4a_device_set_color_control(K4A_COLOR_CONTROL_AUTO_EXPOSURE_PRIORITY) .

If the device is not enumerating under device manager, it may be because it's plugged into an unsupported USB3
controller.

For the Azure Kinect DK on Windows, Intel, Texas Instruments (TI), and Renesas are the only host controllers
that are supported. The Azure Kinect SDK on Windows platforms relies on a unified container ID, and it must
span USB 2.0 and 3.0 devices so that the SDK can find the depth, color, and audio devices that are physically
located on the same device. On Linux, more host controllers may be supported as that platform relies less on the
container ID and more on device serial numbers.

The topic of USB host controllers gets even more complicated when a PC has more than one host controller
installed. When host controllers are mixed, a user may experience issues where some ports work fine and other do
not work at all. Depending on how the ports are wired to the case, you may see all front ports having issues with

https://support.microsoft.com/help/4494277/reset-azure-kinect-dk

Depth camera auto powers down

Using Body Tracking SDK with Unreal

Next steps

the Azure Kinect

Windows: To find out what host controller you have open Device Manager

1. View -> Devices by Type
2. With the Azure Kinect connected select Cameras->Azure Kinect 4K Camera
3. View -> Devices by Connection

To better understand which USB port is connected on your PC, repeat these steps for each USB port as you
connect Azure Kinect DK to different USB ports on the PC.

The laser used by the depth camera to calculate image depth data, has a limited lifespan. To maximize the life of
the lasers, the depth camera will detect when depth data is not being consumed. The depth camera power downs
when the device is streaming for several minutes but the host PC is not reading the data. It also impacts Multi
Device Synchronization where subordinate devices start up in a state where the depth camera is streaming and
depth frames are actively help up waiting for the master device to start synchronizing captures. To avoid this
problem in Multi Device capture scenarios, ensure the master device starts within a minute of the first subordinate
being started.

To use the Body Tracking SDK with Unreal, make sure you have added <SDK Installation Path>\tools to the
environment variable PATH and copied dnn_model_2_0.onnx and cudnn64_7.dll to
Program Files/Epic Games/UE_4.23/Engine/Binaries/Win64 .

More support information

Use Azure Kinect Sensor SDK to record file format
11/12/2019 • 2 minutes to read • Edit Online

TRACK NAME CODEC FORMAT

COLOR Mode-Dependent (MJPEG, NV12, or YUY2)

DEPTH b16g (16-bit Grayscale, Big-endian)

IR b16g (16-bit Grayscale, Big-endian)

IMU Custom structure, see IMU sample structure below.

Using third-party tools

ffmpeg -i output.mkv -map 0:1 -vsync 0 depth%04d.png

IMU sample structure

FIELD TYPE

Accelerometer Timestamp (µs) uint64

Accelerometer Data (x, y, z) float[3]

Gyroscope Timestamp (µs) uint64

Gyroscope Data (x, y, z) float[3]

Identifying tracks

To record sensor data, the Matroska (.mkv) container format is used, which allows for multiple tracks to be stored.
using a wide range of codecs. The recording file contains tracks for storing Color, Depth, IR images, and IMU.

Low-level details of the .mkv container format can be found on the Matroska Website.

Tools such as ffmpeg or the mkvinfo command from the MKVToolNix toolkit can be used to view and extract
information from recording files.

For example, the following command will extract the depth track as a sequence of 16-bit PNGs to the same folder:

The -map 0:1 parameter will extract track index 1, which for most recordings will be depth. If the recording
doesn't contain a color track, -map 0:0 would be used.

The -vsync 0 parameter forces ffmpeg to extract frames as-is instead of trying to match a framerate of 30 fps, 15
fps, or 5 fps.

If IMU data is extracted from the file without using the playback API, the data will be in binary form. The structure
of the IMU data is below. All fields are little-endian.

https://github.com/microsoft/azure-docs/blob/master/articles/kinect-dk/record-file-format.md
https://www.matroska.org/index.html
https://mkvtoolnix.download/

TAG NAME TAG TARGET TAG VALUE

K4A_COLOR_TRACK Color Track Matroska Track UID

K4A_DEPTH_TRACK Depth Track Matroska Track UID

K4A_IR_TRACK IR Track Matroska Track UID

K4A_IMU_TRACK IMU Track Matroska Track UID

K4A_CALIBRATION_FILE Calibration Attachment Attachment filename

Next steps

It may be necessary to identify which track contains Color, Depth, IR, and so on. Identifying the tracks is needed
when working with third-party tools to read a Matroska file. Track numbers vary based on the camera mode and
set of enabled tracks. Tags are used to identify the meaning of each track.

The list of tags below are each attached to a specific Matroska element, and can be used to look up the
corresponding track or attachment.

These tags are viewable with tools such as ffmpeg and mkvinfo . The full list of tags is listed on the Record and
Playback page.

Record and Playback

	Cover Page
	Azure Kinect DK documentation
	Overview
	About Azure Kinect DK

	Quickstarts
	Set up Azure Kinect DK
	Record sensor streams to a file
	Build your first application
	Set up Body Tracking SDK
	Build your first body tracking application

	Concepts
	Depth camera
	Coordinate systems
	Body tracking joints
	Body tracking index map

	How-to guides
	Use Sensor SDK
	Azure Kinect Sensor SDK
	Find then open device
	Retrieve images
	Retrieve IMU samples
	Access microphone
	Use image transformations
	Use calibration functions
	Capture device synchronization
	Record and playback

	Use Body Tracking SDK
	Get body tracking results
	Access data in body frame

	Add Azure Kinect library to a project
	Update Azure Kinect firmware
	Use recorder with external synchronized units

	Tools
	Azure Kinect viewer
	Azure Kinect recorder
	Azure Kinect firmware tool

	Resources
	Download the Sensor SDK
	Download the Body Tracking SDK
	System requirements
	Hardware specification
	Multi-camera synchronization
	Compare to Kinect for Windows
	Reset Azure Kinect DK
	Azure Kinect support
	Azure Kinect troubleshooting
	Warranties, extended service plans, and Terms & Conditions
	Safety information

	References
	Sensor API
	Body tracking API
	Record file format

